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INTRODUCTION

Computer graphics refers to the use of computational and mathematical foundations
that generate and process images using computers to store, create, and manipulate
drawings and pictures. Earlier, applications in engineering and science had to rely
on expensive and cumbersome equipment. The development and advancement in
computers has made interactive computer graphics an effective tool. It can be
used to present information in such wide-ranging fields as medicine, entertainment,
training, business, engineering, education, government, science, advertising, industry,
and art. Computer graphics generates special effects using imaging, geometry,
animation and rendering.

Designing is a major application of computer graphics. It is particularly used
in engineering and architectural systems. Computer Aided Design (CAD) techniques
are now used on a regular basis to design buildings, aircrafts, computer-
components, textiles, automobiles and a variety of consumer products. The CAD
environment replaces the traditional tools of design with parameterized modelling
routines that have interactive graphic capabilities. These capabilities are so versatile
and dynamic that a designer can carry out unlimited number of experiments to
obtain better designs.

Among the other applications of computer graphics, Image Processing,
Animation, Morphing, Simulation, e-Learning Material Designing and Graphic
Designing are rapidly gaining demand and usage in education, training, advertisement
and entertainment. Computer graphics has highly influenced the film industry with
its multimedia applications. Controlled animation, simulation and morphing have
increasingly been applied in the study of time-varying physical phenomena, object
movement and operating sequences of machinery in scientific and industrial research.
Computer-aided image processing and picture analysis are now indispensable
tools for remote sensing, aerial survey, space research, pattern recognition, CT
scans and research in medical sciences.

This book, Computer Graphics, follows the SIM format or the self-
instructional mode wherein each Unit begins with an Introduction to the topic
followed by an outline of the Objectives. The detailed content is then presented in
a simple and an organized manner, interspersed with Check Your Progress questions
to test the understanding of the students. A Summary along with a list of Key
Words and a set of Self Assessment Questions and Exercises is also provided at
the end of each unit for effective recapitulation.
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COMPUTER GRAPHICS
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1.0 Introduction
1.1 Objectives
1.2 Application Areas of Computer Graphics
1.3 Overview of Graphics Systems
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1.6 Summary
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1.0 INTRODUCTION

Today, computers have become important tools that produce pictures economically.
Graphical displays can be used in all areas. Therefore, its extensive usage is not
surprising. Although early applications in science and engineering had to rely on
cumbersome and expensive equipment, current advances in computer technology
have made interactive computer graphics a practical tool. Today, computer graphics
are being used in diverse areas like engineering, science, business, medicine,
government, industry, entertainment, training, education and art. In computers, the
term graphics implies almost everything that is neither text nor sound. These days,
almost all computers use some level of graphics, and computer users expect to
control their computers through shortcuts/icons and images. They no longer depend
on typing alone. One thinks of computer graphics as drawing pictures on computer
systems. These can be drawings, photographs, simulations (like java applets), or
movies. On the other hand, they may be images from places one cannot see directly,
such as medical images (DNA structure, etc.) from inside our body. One would
like to use images on computers to not just look more practical, but also to be
more practical in terms of their colour and brightness combinations, the way different
materials appear, and the way objects are lighted.
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1.1 OBJECTIVES

After going through this unit, you will be able to:
• Discuss the various applications of computer graphics
• Explain the various types of video display devices‚ raster-scan and random

scan systems
• Describe the various types of input devices

1.2 APPLICATION AREAS OF COMPUTER
GRAPHICS

This section will discuss the applications of computer graphics for which an
understanding of Computer-aided Design (CAD) is essential.

Computer graphics is mainly used in the process of design, generally for
engineering and architectural systems. But almost all products are now computer
designed. Generally Computer-aided design (CAD) methods are now used to
design automobiles, buildings, watercraft, aircraft, embedded systems, spacecraft,
textiles and many other products.

Generally, objects are first displayed for design applications in a wireframe
outline form which describes the internal features and the overall shape of the
object. Wireframe displays also allow designers to rapidly see the effects of
interactive adjustments to design the shape. The software packages for CAD
applications generally provide a multi-window environment.

Animations are often used in CAD applications. Real time animations using
wireframe displays on a video monitor are used to test the performance of a
vehicle or system. When one does not display objects with rendered surfaces, the
calculations for each segment of the animation can be performed quickly to produce
a smooth real-time motion on the screen. Also, wireframe displays allow the designer
to look into the interior of the vehicle and to watch the behaviour of inner
components during the motion. Animations in virtual reality environments are
used to determine how vehicle operations are affected by certain motions.

When object designs are complete, or near completion, realistic lighting
models and surface rendering is applied to produce the displays which will show
the appearance of the final product. Realistic displays can also be generated to
advertise automobiles and other vehicles using special lighting effects and
background scenes.

Building Architectures

Architects also use interactive graphics methods to layout floor plans, which show
the positioning of the rooms, doors, windows, stairs, shelves, counters, and other
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building features. Working from the display of a building layout on a video monitor,
an electrical designer can try out arrangements for wiring, electrical outlets, and
fire warning systems. Also, facility-layout packages can be applied to the layout to
determine space utilization in an office or on a manufacturing floor.

Realistic displays of architectural designs, allow both architects and their
clients to study the appearance of a single building or a group of buildings, like a
campus or an industrial complex. In addition to the realistic building displays, the
graphics packages also provide facilities for experimenting with three-dimensional
interior layouts and lighting.

Computer Art

Computer graphics methods are widely used in fine art as well as commercial art
applications. Artists use a variety of computer methods including special purpose
hardware, paintbrush programs, specific purpose software, desktop publishing
software, CAD packages, animation packages, etc., to provide facilities for
specifying object motions and designing object shapes.

The paintbrush program allows graphics users to paint pictures available on
the video monitor. Actually the picture is usually painted electronically on a graphics
tablet using a stylus, which can simulate different brush strokes, brush widths and
colours.

Fine artists use a variety of other computer technologies to produce images.
To create a picture, artists use a combination of three-dimensional modeling
packages, texture mapping, drawing programs and CAD software. In the
mathematical art, artists use a combination of mathematical functions, fractal
procedures, mathematical software, ink-jet printers, and others systems to create
a variety of three-dimensional and two-dimensional shapes and stereoscopic image
pairs.

A common graphics method employed in many commercials is morphing,
where one object is transformed into another. This method has been used in TV
commercials to turn an oil container into an automobile engine, an automobile into
a tiger, a puddle of water into a tire, and one person face into another face.

Presentation Graphics

A major application area of computer graphics is presentation graphics, which is
used to produce illustrations for reports or to generate 35-mm slides or
transparencies to use with projectors. Presentation graphics is commonly used to
summarize statistical, financial, mathematical, economic and scientific data for
managerial reports, research reports, and other types of reports. Workstation
devices and service bureaus exist for converting screen displays into 35-mm slides
or overhead transparencies for use in presentations. The main examples of
presentation graphics are bar charts, pie charts, line graphs, surface graphs and
other displays.
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Entertainment

These days, computer graphics methods are widely used to make music videos,
motion pictures, television shows, etc. Many TV shows and sports telecast regularly
employ computer graphics methods. Music videos use graphics in several ways.
Graphics objects can be combined with live action or graphics and image
processing techniques can be used to produce a transformation of one person or
object into another (i.e., morphing).

Image Processing

Although methods used in computer graphics and image processing overlap, the
two areas are concerned with fundamentally different operations. Image processing
applies techniques to modify or interpret existing pictures, such as satellite
photographs and TV scans. Two principal applications of image processing are
improving picture quality and machine perception of visual information, as used in
robotics.

To apply image-processing methods, one first digitizes a photograph or any
other picture into an image file. Then digital methods can be applied to rearrange
picture parts, to increase colour separations, or to improve the quality of shading.
These techniques are widely used in commercial art applications that involve
retouching and rearranging of sections and of photographs and other art work.
Similar methods are used to analyse satellite photos of the earth and photos of
galaxies.

Medical science also makes wide use of image-processing techniques to
enhance images through preprocessing steps, in tomography and in various
simulations. Tomography is a technique of X-ray photography that allows cross-
sectional views of physiological systems to be displayed. Both Computed X-ray
Tomography (CT) and Position Emission Tomography (PET) use the projection
method to reconstruct cross sections from digital data. These techniques are also
used to monitor internal functions and show cross sections during surgery. Other
medical imaging techniques include ultrasonic and nuclear medicine scanners.
Ultrasonic uses high frequency sound waves, instead of X-rays.

Education and Training

Computer-generated methods of financial, physical, and economic systems are
often used as educational aids for various purposes. Physiological systems, modeling
of physical systems, population trends, equipment, etc., can be used to help trainees
understand the operation of a system in an attractive manner. Special systems are
designed for some training applications. Examples of such specialized systems are
the simulators for practice session or training of aircraft pilots, ship captains, heavy-
equipment operators, air traffic control personnel, etc. Some simulators have no
video screen, for example, a flight simulator with only a control panel for instrument
flying. But most simulators provide graphics screens for visual operation. A
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keyboard is used to input parameters affecting the performance of an airplane or
an environment, and the pen plotter is used to chart the path of an aircraft during a
training session.

Visualization

Scientists, engineers, medical personnel, system analysts, and others often need to
analyse large amounts of information to study the behaviour of certain processes.
Numerical simulations can be carried out on supercomputers for frequently
producing data files containing thousands and often millions of data values. Similarly,
satellite cameras, radars and other sources are gathering large data files faster than
they can be compiled. The process of scanning these large sets of data to determine
trends and relationships is a deadly and unproductive process. But if graphics is
applied to data, the converted form (visual form) is much more interesting.
Producing graphical representations for engineering, scientific, and medical data
sets and related processes is generally referred as scientific visualization. The term
business visualization is used in connection with data sets related to industry,
commerce and other nonscientific areas.

There are many different kinds of data sets, and effective visualization schemes
that depend on the characteristics of the data. A collection data can contain scalar
values, vectors, higher-order tensors, or any combination of these data types.
Additional techniques include contour plots, graphs and charts, surface renderings,
and visualizations of volume interiors. In addition, image processing techniques
are combined with computer graphics to produce many data visualizations.
Mathematicians, scientists, and others use visual techniques to analyse mathematical
functions and processes or simply to produce interesting graphical representations.

1.3 OVERVIEW OF GRAPHICS SYSTEMS

Graphics capabilities for both two-dimensional and three-dimensional applications
are now common in general-purpose computer applications, including many hand-
held tools like calculators. Graphics users can use a wide variety of interactive
input devices and graphics software packages with personal computers. They can
choose from a number of complicated special-purpose graphics hardware systems
(like track ball and plotters) and technologies for higher quality applications.

1.3.1 Video Display Devices

There are various types of video display devices some of them have been discussed
in this section.

Refresh cathode-ray tubes (CRTs)

A cathode-ray tube is frequently called a CRT. A CRT is an electronic display
device in which an electron beam can be focused on a phosphorescent viewing
screen and speedily varied in position and intensity to produce an image. The
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best-known application of a CRT is as a picture tube in all commercially available
televisions. Other applications include radar screens, oscilloscopes, flight simulators,
embedded systems, and computer monitors.

A cathode-ray tube consists of three basic parts: the glass wrapper, the
phosphor viewing surface, and the electron gun assembly. The electron gun assembly
consists of a heated metal cathode enclosed by a metal anode. The anode is given
a positive electrical voltage and the cathode is given a negative electrical voltage.
There is a flow of electrons from the cathode through a small nozzle in the anode
that produces a beam of electrons. The electron gun contains electrical plates or
coils which focus, accelerate, and redirect the electron beam to strike the phosphor
viewing surface in a quick side-to-side scanning motion starting at the top of the
surface and working downwards, repeating the same process. The phosphor
viewing surface is a thin layer of material through which visible light is emitted
when hit by the electron beam. The colour on the display unit is determined by the
chemical composition of the phosphor and can be altered by changing its
composition. The glass wrapper consists of a relatively flat face plate (horizontal
and vertical), a neck section, and a funnel section. The electron gun assembly is
packed into the glass neck at the opposite end. The phosphor viewing surface is
deposited on the inside of the glass plate. The function of the funnel is to place the
electron gun at an appropriate distance from the plate and to grip the glass envelope
together so that a vacuum can be achieved inside the tube.

Anode

Deflecting coils
Control Grid

Fluorescent screen

Heater

Cathode Electron
beam Focussing coil

Fig. 1.1 A Cathode Ray Tube

A cathode-ray tube, used in a colour computer monitor or colour television,
has a few additional parts. There are three electron guns instead of one electron
gun in general, one for the red colour signal, one for blue, and one for green. Also
three different phosphor materials are used on the display surface, one for each
colour. A 63 Centimeters (25-inch) colour TV picture tube may have a shadow
mask with 1.5 million individual phosphor dots and 500000 perforations.
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Design of CRT

As a graphics application is initiated, the electron gun is programmed for each new
graphics application. New screen sizes, new image resolution settings, and new
overall glass envelope dimensions, all require a new electron gun design. New
image resolution necessities may require a new technique of depositing the phosphor
dots on the face plate. As a result it may require new material processing techniques.
The amount of time the phosphors produce light or shine is controlled by the
chemical composition of the phosphor. This phenomenon is known as persistence.
In a colour television CRT, the electron beam scans the screen 25 times per second
(as shown in figure 1.2). If the persistence is longer than one twenty-forth of a
second, the image shows two scans at the same time and appears indistinct.

1.3.2 Raster Scan Display

The most common type of graphics monitor, the raster scan, is based on television
technology and uses a CRT. The electron beam in a raster scan system is swept
across the CRT, one row at a time from top to bottom, as shown in Figure 1.2.
The beam intensity is turned on and off as the electron beam moves across each
row, to create a pattern of illuminated dots. The picture definition is saved in a
memory area (called the frame buffer). The frame buffer holds the set of intensity
values for all the screen points. The stored intensity values are then fetched from
the refresh buffer and displayed on the screen one row at a time. The capability of
a raster scan system to save intensity information for each pixel makes it more
efficient for the practical display of scenes containing fine shade and colour patterns.

Fig. 1.2 Raster Scan Display

In a simple black-and-white system (one kind of monochrome screen),
each screen point is either on or off. Thus, only one bit per pixel is needed to
control the intensity of screen positions. A bit value of 1 indicates that the electron
beam is to be turned on at that position for a bi-level system, and a value of 0
indicates that the beam intensity is off at that pixel position. Up to 24 bits per pixel
may be included in high-quality systems, which can require several megabytes of
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memory for the frame buffer, depending on the resolution of the system. A system
with 24 bits per pixel and a screen resolution of 1024 × 1024 requires 3 MB of
storage for the frame buffer.

1.3.3 Random Scan Display

Basically there are two types of CRTs: raster scan type and random scan type.
The main difference between the two is based on the technique with which the
image is generated on the phosphor coated CRT screen. In raster scan, the electron
beam sweeps the entire screen in the same way as you would write a full page text
in a note book, word by word, character by character, from left to right and top to
bottom. On the other hand, in random scan technique, the electron beam is directed
at that point of the screen where the image is to be produced. It generates the
image by drawing a set of random straight lines much in the same way one might
move a pencil over a piece of paper to draw an image, drawing strokes from one
point to another, one line at a time. This is why this technique is also referred to as
vector drawing or stroke writing or calligraphic display.

A Computer Graphics Hardware System (General)

I/O
Devices CPU DPU Display

Controller
CRT

Main
Memory VRAM

Fig. 1.3  Block Diagram of Random Scan Display

There are of course no bit planes containing mapped pixel values in the
vector system. Instead the display buffer memory stores a set of line drawing
commands along with end point coordinates in a display list or display program
created by a graphics package. The display processing unit (DPU) executes each
command during every refresh cycle and feeds the vector generator with digital x,
y, and x, y values. The vector generator converts the digital signals into equivalent
analog deflection voltages. This causes the electron beam to move to the start
point or from the start point to the end point of a line or vector. Thus the beam
sweep does not follow any fixed pattern; the direction is arbitrary as dictated by
the display commands. When the beam focus must be moved from the end of one
stroke to the beginning of the other, the beam intensity is set to 0.

Though vector-drawn images lack in depth and colour precision, random
displays can work at higher resolution than raster displays. The images of random
display are sharp and have smooth edges unlike the jagged edges and lines on
raster displays.
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Glass Plates Vertical Filter

Color Filter

Horizontal Filter

Crystal Molecules

Fig. 1.4  Functioning of LCD Display

1.3.4 Liquid Crystal Display (LCD)

LCD is the technology used for displays in notebooks, laptops and other smaller
computers. Like gas-plasma technologies and light-emitting diodes (LEDs), LCDs
allow displays to be much thinner than CRT technology. The liquid crystal displays
use much less power than LED and gas-display displays because they work on
the principle of blocking light rather than its release.

A liquid crystal display can be made with either a passive or an active matrix
display grid. The active matrix LCD is also called a thin film transistor (TFT)
display. The passive matrix liquid crystal display has a grid of conductor materials
with pixels located at each intersection in the grid. A current can be applied across
two conductors on the grid to control the light for any pixel. Some passive matrix
liquid crystal displays have a double scanning mechanism. This means that they
scan the grid with current to times in the same time that it takes for one scan in the
original technology. However, active matrix technology is still a superior one.

Direct View Storage Tube

Direct View Storage Tube (DVST) is rarely used today as part of a display system.
However, DVST marks a significant technological change in the usual refresh type
display. Both in the raster scan and random scan system the screen image is
maintained flicker free by redrawing or refreshing the screen many times per second.
This is done by cycling through the picture data stored in the refresh buffer. In
DVST there is no refresh buffer; images are created by drawing vectors or line
segments with a relatively slow moving electron beam. The beam is designed not
to draw directly on phosphor but on a fine wire mesh (called storage mesh) coated
with dielectric and mounted just behind the screen. A pattern of positive charge is
deposited on the grid, and this pattern is transferred to the phosphor coated screen
by a continuous flood of electrons emanating from a separate flood gun.
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Cathode
Deflection system

Accelerating System

Storage Grid

Collector
Flood

Cathode

Control Grid Focussing
System

Phosphor
on Inner Surface

Fig. 1.5 Direct View Storage Tube (DVST)

Just behind the storage mesh is a second grid, the collector. Its main purpose
is to smooth out the flow of flood electrons. These electrons pass through the
collector at a low velocity and are attracted to the positively charged portions of
the storage mesh but repelled by the rest. Electrons not repelled by the storage
mesh pass right through it and strike the phosphor.

To increase the energy of these slow moving electrons and thus create a
bright picture, the screen is maintained at a high positive potential. The storage
tube retains the image generated until it is erased. Thus no refreshing is necessary,
and the image is absolutely flickering free.

A major disadvantage of DVST in interactive computer graphics is its inability
to selectively erase parts of an image from the screen. To erase a line segment
from the displayed image, one has to first erase the complete image and then
redraw it by omitting that line segment. However, the DVST supports a very high
resolution which is good for displaying complex images.

1.4 INPUT DEVICES FOR GRAPHICS

This section will discuss the input devices that are used in a graphics system.

Keyboard

A keyboard is an input device. It is partially modelled after the keyboard of a
typewriter and uses a similar arrangement of buttons or keys. These keys act as
electronic switches. A computer keyboard typically has characters imprinted on
the keys and each press of a key typically corresponds to a single written symbol.
However, to produce some special symbols and notations, one is required to
press and hold several keys simultaneously or in a particular sequence.
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Fig. 1.6 A Computer Keyboard

The understanding of key-presses is generally left to the software in a modern
computer. A computer keyboard detects distinguishably each physical key from
every other and reports all key-presses to the controlling software. Computer
keyboards can also be used for computer gaming, either with regular keyboards
or by using special gaming keyboards, which can accelerate frequently used key-
press combinations. A computer keyboard can also be used to give commands to
the operating system of a computer, such as Macintosh Control-Alt-Delete
combination.

Types of keyboard

The following are the various types of keyboards:
(i) Standard:  In India, QWERTY keyboard is the standard keyboard, in

which the first six alphabet keys are Q, W, E, R, T and Y in that sequence.
Standard keyboards, such as the 104-key Windows keyboards include
numbers, punctuation symbols, alphabetic characters and a variety of function
keys (for special purposes).

(ii) Gaming and multimedia: Multimedia keyboards are the keyboards
with extra keys. They have special keys for music, accessing web, and
other often used programs, volume buttons, a mute button and also a
sleep (standby) button. Gaming keyboards have extra function keys, which
are programmed with keystroke macros as per requirement. For example,
‘shift+ctrl+y’ can be a keystroke that is frequently used in a certain
computer game.

(iii) Thumb-sized: It is a wireless keyboard. In this keyboard a Windows
button and multimedia keys are placed at the top. Smaller keyboards
have been introduced for PDAs, laptops, cell phones or users who have
limited workspace. The size of a standard keyboard is dictated by the
practical consideration that the keys must be large enough to be easily
pressed by fingers. As a size manipulation, the numeric keyboard to the
right of the alphabetic keyboard can be removed, or the size of the keys
can be reduced but it makes harder to enter text. Another way to reduce
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the size of the keyboard is to reduce the number of keys and use key
combinations for certain operations, i.e., pressing several keys
simultaneously. For example, the GKOS keyboard has been designed for
small wireless devices. Mobile phones allow a single key to type three or
four different symbols.

(iv) Numeric: Numeric keyboards contain only numbers, mathematical symbols
for addition, subtraction, multiplication, and division, a decimal point, and
several function keys (e.g., End, Delete, etc.). Such types of keyboards are
designed specially for data entry.

Mouse

A mouse is an input pointing device. It functions by detecting two-dimensional
motion of light or wheel relative to its supporting surface. Physically, a mechanical
mouse consists of an object held under one of the user’s hands, with one or
more buttons. The mouse’s motion typically translates into the motion of a
pointer on a display. This motion allows for fine control of GUI (Graphical User
Interface).

Fig. 1.7 A Computer Mouse

The Light Pen

A light pen is a graphics input device. It utilizes a light-sensitive detector to select
objects on a display screen. The functioning of a light pen is similar to a mouse,
except that a light pen user can move the pointer and select objects on the display
screen by directly pointing to the objects with the pen.

Fig. 1.8 A USB Light Pen



NOTES

Self-Instructional
Material 13

Introduction to Computer
Graphics

Joystick

A joystick is also a graphics input device consisting of a stick. It plays a major role
in game activity controlling. Joysticks usually have one or more push-buttons whose
state can also be read by the computer for various operations. Joysticks are often
used to control video games. Joysticks have been the principal flight control
mechanism in the cockpits of many aircrafts, particularly military jets, where centre
stick or side-stick locations are employed. An analog stick is a popular variation
of the joystick and is used in modern video game consoles.

Fig. 1.9 A Joy Stick

Joysticks often have one or more fire buttons. These buttons are used to
trigger some kind of action. These are simple on/off switches. Some joysticks
have force feedback capability. These are thus active devices, not merely input
devices. Most Input/Output interface cards for PCs have a joystick (game control)
port.

Check Your Progress

1. Define CRT.
2. What does frame buffer holds?
3. What is a joystick?

1.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A CRT is an electronic display device in which an electron beam can be
focused on a phosphorescent viewing screen and speedily varied in position
and intensity to produce an image.

2. The picture definition is saved in a memory area (called theframe buffer).
The frame buffer holds the set of intensity values for all the screen points.

3. A joystick is also a graphics input device consisting of a stick. It plays a
major role in game activity controlling.
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1.6 SUMMARY

• Computer graphics is mainly used in the process of design, generally for
engineering and architectural systems.

• Computer graphics methods are widely used in fine art as well as commercial
art applications.

• Graphics capabilities for both two-dimensional and three-dimensional
applications are now common in general-purpose computer applications,
including many handheld tools like calculators.

• A CRT is an electronic display device in which an electron beam can be
focused on a phosphorescent viewing screen and speedily varied in position
and intensity to produce an image.

• LCD is the technology used for displays in notebooks, laptops and other
smaller computers. Like gas-plasma technologies and light-emitting diodes
(LEDs), LCDs allow displays to be much thinner than CRT technology.

• A keyboard is an input device. It is partially modelled after the keyboard of
a typewriter and uses a similar arrangement of buttons or keys. These keys
act as electronic switches.

• Presentation graphics is commonly used to summarize statistical, financial,
mathematical, economic and scientific data for managerial reports, research
reports, and other types of reports.

1.7 KEY WORDS

• Mouse:  A mouse is an input pointing device. It functions by detecting
two-dimensional motion of light or wheel relative to its supporting surface.

• Light Pen: A light pen is a graphics input device. It utilizes a light-sensitive
detector to select objects on a display screen. The functioning of a light pen
is similar to a mouse, except that a light pen user can move the pointer and
select objects on the display screen by directly pointing to the objects with
the pen.

1.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the various applications of computer graphics.
2. What are the different types of video display devices?
3. Differentiate between raster scan and random scan systems.
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Long Answer Questions

1. Explain the raster scan display systems.
2. What do you understand by the random scan display? Explain.
3. Explain the various types of input devices.

1.9 FURTHER READINGS
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UNIT 2 OUTPUT PRIMITIVES

Structure
2.0 Introduction
2.1 Objectives
2.2 Points and Lines
2.3 Line-Drawing Algorithms

2.3.1 Digital Differential Analyser (DDA)
2.3.2 Bresenham’s Line-Drawing Algorithm
2.3.3 Bresenham’s Circle Algorithm

2.4 Ellipse Generating Algorithm
2.5 Answers to Check Your Progress Questions
2.6 Summary
2.7 Key Words
2.8 Self Assessment Questions and Exercises
2.9 Further Readings

2.0 INTRODUCTION

In this unit‚ you will learn about the line‚ circle and ellipse drawing algorithms.
Basic shapes like lines, circles and curves play an important role in computer
graphics. Such shapes are created as a collection of pixels. Various algorithms
have been developed to determine the next pixel position to produce a particular
shape. Basic arithmetic operations and some complex operations are performed
to determine pixel positions.

2.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand point, line and line segment
• Discuss vectors
• Explain line drawing algorithms
• Analyse Bresenham’s circle algorithm
• Appreciate ellipse generating algorithm

2.2 POINTS AND LINES

This section will discuss some basic mathematical concepts regarding line, line
segments and points.
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A position in a plane is known as a point and any point can be represented by any
ordered pair of numbers (x, y), where x is the horizontal distance from the origin
and y is the vertical distance from the origin.

                                                 y                        . (x, y) 

  (0, 0)                       x 
Fig. 2.1 Representation of a Point at (x, y) Position

Line
Line can be represented by two points, i.e., both the points will be on the line and
lines can also be described by an equation. It can also be defined by any point
which satisfies the equation on the line. If two points P1(x1, y1) and P2(x2, y2) are
specifying a line and another third point P(x, y) also satisfies the equation, the
slope between points P1P and P1P2 will be as follows:

1

1

xx
yy

−
−

 =
12

12

xx
yy

−
−

....(2.1)

or (x - x1) (y2 - y1) = (x2 - x1) (y - y1)
or (x2 - x1)y  = (x - x1) (y2 - y1) + y1(x2 - x1)

or y = 







−
−

12

12

xx
yy

 (x - x1) + y1 ...(2.2)

                                                                                                          P2 (x2, y2) 

                                                                P (x, y)             y = 







−
−

12

12

xx
yy

 (x – x1) + y1   

                                                          P1 (x1, y1) 

Fig. 2.2 A Line with Equation

This is the equation of a line that is passing through the coordinate points (x1, y1)
and (x2, y2). Because terms x1, y1, and x2, y2 are numerical values therefore the
quantity (y2 – y1)/(x2 – x1) will be a constant. Let us denote it by m.
Putting the value of m in equation (2.2), we have

y = m(x – x1) + y1

y – y1 = m(x – x1) ...(2.3)
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    where, y – y1 = mx – mx1

y = mx – mx1 + y1

= mx + (–mx1 + y1)

where the value (–mx1 + y1) is constant, let us denote it by c
then

y = mx + c ...(2.4)

                                      Y               y = mx + c           

                                         (0, c) 

                              (0, 0)                                                                X 
Fig. 2.3 A Line with Intercept c

which crosses the y-axis at height c and is known as the slope –intercept form of
the line where c is intercept and m is the slope of the line.
If this line passes through the origin (0, 0) then putting (0, 0) in equation 2.4

                                      Y 

                                                                              y = mx 

                                   (0, 0)                                                                X 

Fig. 2.4 A Line passing through Origin

we get, 0 = m.0 + c
or c = 0
or y = mx ....(2.5)

This is the equation of a line passing through the origin as shown in the figure 2.4
The equation 2.2 can be written as follows:

(y2 – y1)x – (x2 – x1)y  + x2y1 – x1y2 = 0

Replacing the constant values (y2 – y1), (x2 – x1) and (x2y1 – x1y2) by P, –Q, R, we
get

Px + Qy + R = 0 ....(2.6)
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Comparing this equation with equation 2.5, we have

m = –
Q
P

and c = –
Q
R

                                           Y                     y = m2x + c2           

                                                       θ2 

                                                                               y = m1x + c1 
                                           θ                 θ1       c2 

 
                                       c1 

 
Fig. 2.5 Two Lines intercepting each Other

Let us consider two lines y = m1x + c1, and y = m2x + c2, as shown in the figure
2.5, which have tangents m1 = tanθ1 and m2= tanθ2.
Then, θ =  θ1 ~ θ2   (since if m1 > m2,  θ1 – θ2 otherwise  θ2 – θ1)
Taking tan of both side

tanθ = tan(θ1 ~ θ2)

= 
21

21

tan.tan1
tan~tan

θθ
θθ

+

tanθ = 
21

21

1
~

mm
mm

+

θ = tan–1 








+ 21

21

1
~

mm
mm

...(2.7)

If the line equations are a1x + b1y + c1 = 0, and a2x + b2y + c2 = 0 then by putting

the values of m1= –
1

1

b
a  and m2 = – 

2

2

b
a , we get

θ = tan–1 







+ 2121

2121 ~
bbaa
baab

....(2.8)
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Case 1: If both lines are parallel then angle will be zero

tan–1 1 2 1 2

1 2 1 2

~b a a b
a a b b

 
 + 

= 0

or
1 2

1 2

~
1
m m

m m
 
 + 

= 0

or m1 ~ m2 = 0
or m1 = m2       i.e., slopes are equal ...(2.9)

or tan–1 1 2 1 2

1 2 1 2

~b a a b
a a b b

 
 + 

= 0

or b1a2 ~ a1b2 = 0
or a1b2 = b1a2 ...(2.10)

Case 2: If both are perpendicular then angle should be 90

i.e., tan–1 1 2

1 2

~
1
m m

m m
 
 + 

= π/2

or 1 2

1 2

~
1
m m

m m
 
 + 

= ∞

or 1 + m1m2 = 0
m1m2 = –1 ...(2.11)

or tan–1 1 2 1 2

1 2 1 2

~b a a b
a a b b

 
 + 

= π/2

1 2 1 2

1 2 1 2

~b a a b
a a b b

 
 + 

= ∞

a1a2 + b1b2 = 0 ...(2.12)

Line Segments

Any line or piece of line having end points is called a line segment. We can find the
equation of any line segment using its end points and it can easily be checked
whether any point lies on the line segment or not.
A point will be on the line segment if,

(i) It satisfies the equation of the line segment
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(iii) Its y-coordinate lies between the coordinates of the end points

 

                                                                         P1 

                                               P2 

Fig. 2.6 A Line Segment

Parametric Form of a Line

The parametric form of a line is expressed in terms of u. This form is very important,
specially when we consider any line segment because it gives all the corresponding
points of line segments between 0 and 1. When u = 0 then it gives x1 and when u
becomes 1 it gives x2, i.e., x moves uniformly from x1 to x2 and the same is true for
y values. Therefore

     0 ≤ t ≤ 1
An equation can be obtained

1

2 1

y y
y y

 −
 − 

=  1

2 1

x x
x x
−
−

 = t

equating this equation to u , we get
y = y1+ (y2 – y1)t
x = x1 + (x2 – x1)t

these equations are the parametric form of a straight line.

Length of Line Segment

Consider a line segment with end points P1(x1, y1) and P2(x2, y2). We have to find
the length of the segment. According to the Pythagorous theorem,

(P1A)2 + (P2A)2 = (P1P2)
2

or (x2 – x1)
2 + (y2 – y1)

2 = L2

or L = 2 2
2 1 2 1( ) ( )x x y y− + −

Since P1P2 = L

which is the length of line segment P1P2.
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Vector

A vector is defined as the difference between two point positions. Thus for a two
dimensional vector, as seen in Figure 2.7, we have

V = P2 – P1

= (x2 – x1, y2 – y1)
= Vx, Vy

where the Cartesian components Vx and Vy are projections of V onto the x and y
axis or you can say Vx is the movement along the x-direction and Vy is the movement
along the y direction. Given the two point positions, we can obtain vector
components in the same way for any co-ordinate frame.

                                             Y 
                                               y2                                               P2 

                                                                              V  

                       y1                             P1 

                                          (0, 0)                       x1                x2                     X 

Fig. 2.7 Vector Representation

We can describe a vector as a directed line segment that has two main properties:
magnitude and direction. For the two dimensional vector in Figure 2.7, we calculate
the vector magnitude using the Pythagorous theorem, as follows:

|V| = √(Vx
2 + Vy

2)
The direction of this two dimensional vector can be given in terms of the angular
displacement from the x-axis as follows:

α = tan–1

A vector has same properties no matter where we position the vector within the
single co-ordinate system, and the vector magnitude is independent of the co-
ordinate representation. Of course, if we change the coordinate representation,
the values for vector components too change.

Unit Vector

A vector of unit magnitude is called a unit vector. Unit vectors are often used to
represent concisely the direction of any vector. The unit vector corresponding to a
vector A is written as Â.

Null Vector (Zero Vector)

A vector of zero magnitude which has no direction associated with it is called a
zero or null vector and is denoted by 0 (a thick zero).



NOTES

Self-Instructional
Material 23

Output Primitives(i) Vector AB


 represents the negative of BA


                                                                              B 

       A 

Fig. 2.8 Vector Representation by a Line

(ii) Two vectors having the same magnitude and same directions are said to be
equal and we write P = Q

                                                                                                                                Q 

                                                                                                  P 
 

                                                                             M                        B 

                                                              L                     A 
 

Fig. 2.9 Two Equal Vectors

Addition of Vectors

Vectors are added according to the triangle law of addition, which is a matter of
common knowledge. Let A  and B  be represented by two vectors LM  and

MN  respectively, then LN  = C  is called the sum or resultant of  and . Symbolically,,
we write,

C = A  + B

                                                                                                 N 

                                                                                 C                             B 

                                                                L                    A                       M 

Fig. 2.10 Addition of Two Vectors

Subtraction of Two Vectors

The subtraction of a vector B  from A  is taken to be the addition of – B  to A
and we write it as,

(– )A B A B+ = −
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Multiplication of Vectors by Scalars

We know that  2A A A+ =

    and             (– ) (– ) –2A A A+ =

where both 2A and –2A denote vectors of a magnitude twice of that of A; the
former having the same direction as A and the latter the opposite direction.

In general, the product mA of a Vector A and a scalar m is a vector whose
magnitude is m times that of A and direction is the same or opposite to A as m is
positive or negative.

Thus, A = a Â

Resolution of Vectors

Let i, j, k denote a unit vector along OX, OY, OZ respectively. Let P(x, y, z) be
a point in space. On OP as diagonal, construct a rectangular parallelepiped with
edges OA, OB, OC along axes so that

OA = xi
OB = yi
OC = zk

Then R = OP = OC + CP
= OA + AC’ + OC = OA + OB + OC

Hence, R = xi + yj + zk is called the position vector of P relative to origin O and
r = |R|2  = √(x2 + y2 + z2)

 

       Z 
            

                                                     C                                                  A’ 

                                        B’                                                   P(x, y, z) 

                                                     K              R 

                                      O                                                   B                 Y 

                                                    i 
                                        A                                                     C’ 

                                       X 
Fig. 2.11 Resolution of Vectors
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Unlike the product of two scalars or that of a vector by a scalar, the product of
two vectors is sometimes seen to result in a scalar quantity and sometimes in a
vector. As such, we are lead to define two types of such products: scalar product
and vector product respectively. The scalar and vector products of two vectors A
and B are usually written as A.B and A × B respectively and are read as A dot B
and A cross B. In view of this notation, the former is sometimes called the dot
product and the latter the cross product.

Dot product or scalar product

The dot product of vectors A and B is defined as the product of the length of
vector A projected onto B times the length of vector B, or visa versa.

. cosA B AB= ϕ

              = AxBx + AyBy + AzBz

                                                                                                                       A  

                                                                                A 

                                                                ϕ                                                             B  

                                                                    Acosϕ 

Fig. 2.12 Scalar Product of Two Vectors

Length or magnitude of  a vector
Make sure that the dot product of a vector with itself is always equal to the square
of its magnitude since ϕ = 0o and cos 0o = 1.
Parallel vectors

In case A and B are parallel to each other, then their dot product is similar to the
multiplication (ordinary) of their sizes, since ϕ = 0o and cos 0o = 1.

.A B AB=

Perpendicular vectors

In case A  and B are perpendicular to each other, then their dot product is always
Zero, as we know for θ = 90o we have cos 90o = 0.
Components of a vector

The component of vector A  along a direction d is equal to the dot product of the
vector A  and the unit vector d̂  which points along the direction of d.

ˆ.dA A d=
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The Cosines Law:
                2 2 2 2 cosC A B AB= + − Φ

Dot Product Proof:

 2 . ( ).( ) . 2 .. .
C A B
C C C A B A B A A A B B B
= +

= = + + = + +

2 22 cosA AB Bϕ= + +

2 22 cos(180 )A AB B= + °−Φ +

2 2 2 cosA B AB= + − Φ

The main property of dot product is that it is distributive.
A•(B + C) = A•B + A•C

The dot product is commutative. For any two vectors A  and B  we have,

A B B A= 
We know that the projection of a vector on to itself leaves the magnitude of that
vector unchanged, the dot product of any vector with itself is the square of that
vector’s magnitude.

A A =  A A cos 0° = 2A

Applying this result to the unit vectors means that the dot product of any unit
vector with itself is 1. Additionally, we know that a vector has no projection
perpendicular to itself. Therefore the dot product of any unit vector with any other
vector is zero.

^ ^ ^ ^ ^ ^
. . . (1)(1)cos0 1i i j j k k= = = =

^ ^ ^ ^ ^ ^
. . . (1)(1)cos90 0i i j j k k= = = =

By using the above equations, we can originate a general formula for the dot
product of any two vectors in a rectangular form. The resulting product appears
like it is going to be a dreadful mess, but it consists most of the terms equal to zero.

A B⋅ = 
^ ^ ^ ^ ^ ^

( ).( )x y z x y zA i A j A k B i B j B k+ + + +

= x x y y z zA B A B A B+ +

Thus, the dot product of two vectors is defined as the sum of the products of their
parallel components. By this approach, we can derive the Pythagorous Theorem
for three dimensional objects as follows:
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A B⋅ =   A B cos 0° = x x y y z zA B A B A B+ +  

2A = 2 2 2
x y zA A A+ +  

Cross product

The cross product of two vectors (represented by) a and b is denoted by a × b.
With a right-handed coordinate system in a three-dimensional Euclidean space, a
× b is defined as a vector c that is perpendicular to both a and b.
The cross product of two vectors a and b is defined by the formula

a × b = 
^

sinab nθ

where angle θ is the smaller angle between a and b (0 ≤ θ ≤ 2π), a and b are the
magnitudes of these vectors, and n̂  is the unit vector perpendicular to the plane
containing vectors a and b. If the vectors a and b are collinear (i.e., the angle
between them is either 0 or 2π), then the cross product of a and b is zero.
Computation of cross product
The unit vectors i, j, and k contain an orthogonal coordinate system that satisfies
the following equalities:

i × j = k ,     j × k = i , and    k × i = j
Together with the skew-symmetry and bilinear property of the cross product,
these identities are sufficient to compute the cross product of any two vectors.
Additionally, the following identities also exist:

j × i = –k,     k × j = –i, and     i × k = –j
and, also

i × i = 0 = j × j = k × k.
The coordinates of the cross product of two vectors can be computed easily with
the help of the above rules, without the need to determine any angle. Let us consider

a = 1 2 3a i a j a k+ +

which can also be denoted as (a1, a2, a3), and

b = 1 2 3b i b j b k+ +

which can also be denoted as (b1, b2, b3).
The cross product can then be calculated by applying distributive cross-
multiplication as follows:

a × b = 1 2 3( )a i a j a k+ +  × 1 2 3( )b i b j b k+ +

a × b = a1i × 1 2 3( )b i b j b k+ +  + a2j × 1 2 3( )b i b j b k+ +  + a3k ×

1 2 3( )b i b j b k+ +
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=  (a1i × b1i) + (a1i × b2j) + (a1i × b3k) + (a2j × b1i) + (a2j × b2j) + (a2j
× b3k) + (a3k × b1i) + (a3k × b2j) + (a3k × b3k)

Since scalar multiplication is commutative with cross multiplication, the right hand
side can be regrouped as follows:

a × b = a1b1(i × i) + a1b2(i × j) + a1b3(i × k) + a2b1(j × i) + a2b2(j × j) + a2b3
(j ×   k) + a3b1(k × i) + a3b2(k × j) + a3b3(k × k).

The above equation is the sum of nine terms having cross products. As the
multiplication is carried out using the basic cross product relationships between i,
j, and k defined above, we have the following:

a × b = a1b1(0) + a1b2(k) + a1b3(–j) + a2b1(–k) + a2b2(0) + a2b3(i) + a3b1(j)
+       a3b2(–i) + a3b3(0).

This equation can be written in the form given as follows:
a × b = (a2b3 – a3b2) i + (a3b1 – a1b3) j + (a1b2 – a2b1) k

which can be denoted as (a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1).
Algebraic Properties
An important property of cross product is that it is anti-commutative, that means

R1: a × b = –b × a
The next important property of cross product is that it is distributive over addition,

R2: a × (b + c) = (a × b) + (a × c),
and it is compatible with scalar multiplication such that

R3: (sa) × b = a × (sb) = s(a × b).
It is not associative, but satisfies the Jacobi identity:

R4: a × (b × c) + c × (a × b) + b × (c × a) = 0.
It does not obey the cancellation law that means if a × b = a × c and also if a ≠ 0
then we have

(a × b) – (a × c) = 0
and, by applying the distributive law (given above), we have:

a × (b – c) = 0
Let us consider if vector a is parallel to (b – c), then even if a ≠ 0 it is feasible that
(b – c) ≠ and therefore b ≠ c. However, if both a • b = a • c and a × b = a × c,
then it can be accomplished that b = c. We can say definitely that

a • (b – c) = 0, and a × (b – c) = 0
so that the vector subtraction (b – c) is parallel as well as perpendicular to the
non-zero vector a. This is only achievable if (b – c) = 0. The distributive property,
linearity and Jacobi identity show that (R2 – R4) together with vector addition and
cross product forms a Lie algebra. Additionally, two non-zero vectors a and b are
parallel if and only if they hold
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Check Your Progress

1. What are the conditions for a point to be on a line segment?
2. What is the parametric form of a straight line?
3. What is a zero vector?

2.3 LINE-DRAWING ALGORITHMS

This section will discuss the various aspects of line drawing algorithms.

2.3.1 Digital Differential Analyser (DDA)

The DDA algorithm works on the principle of obtaining the successive pixel values
based on the differential equation governing that line. For a straight line,

dy
dx  = constant

i.e.,
y
x

∆
∆

 = 2 1

2 1

y y
x x
−
−

where coordinate positions (x1, y1) and (x2, y2) are end point coordinates.
We can write the above equation as follows:

∆y = 2 1

2 1

y y
x x
−
−

. ∆x

Hence we can obtain the next value of y by using its previous values.
i.e., yk+1 = yk + ∆y
or yk+1 = yk + ∆x

The DDA algorithm is as follows:
Step 1: Read the end points (x1, y1), (x2, y2)
Step 2: Approximate the length of the line, i.e.,

if (abs(x2 – x1) > abs(y2 – y1)) then
   length = abs(x2 – x1)
otherwise
   length = abs(y2 – y1)

Step 3: Select the raster unit, i.e.,
x = (x2 – x1)/ length
y = (y2 – y1)/ length



Output Primitives

NOTES

Self-Instructional
30 Material

Note: either ∆x or ∆y will be one. Thus the increment value for x or y will be a
unit.
Step 4: Round the values by using

x = x1

y = y1

Step 5: Now plot the points
 k = 1

 while( k <= length)

{

  plot(int x, int y)

  x = x + ∆x
  y = y + ∆y
  k = k+1

}

Step 6: STOP.
Implementation of Dda Algorithm Using ‘C’:

/*Program to Draw a Line using Digital Differential Analyser
Algorithm*/

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{

int gd=DETECT,gm,step,k,dx,dy;

float x,y,x1,x2,y1,y2,xincr,yincr;

clrscr();

initgraph(&gd,&gm,”C:\tc\bgi”);

printf(“\nEnter the Values of Starting points,(x1,y1):”);

scanf(“%f %f”,&x1,&y1);

printf(“\nEnter the Values of Ending points,(x2,y2):”);

scanf(“%f %f”,&x2,&y2);

dx=x2-x1;

dy=y2-y1;

if(abs(dx)>abs(dy))

 step=dx;

else

 step=dy;

xincr=dx/step;

yincr=dy/step;
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y=abs(y1);

putpixel(x,y,RED);

for(k=0;k<step;k++)

 {

 x=abs(x+xincr);

 y=abs(y+yincr);

 putpixel(x,y,BLUE);

 }

getch();

}

The output of this program is as follows:

Enter the Values of Starting points,(x1,y1): 0 0

Enter the Values of Ending points,(x2,y2): 100 160

 

2.3.2 Bresenham’s Line-Drawing Algorithm

We first consider the scan conversion process for drawing lines with a positive
slope that has a value of less than 1. Then we describe Bresenham’s line drawing
algorithm. Pixel position along a line path can then be determined by sampling at
intervals containing unit x. Starting from the left end point (x0, y0) of the given line,
we step to each succeeding column, i.e., x position and plot the pixel whose scan
line y-value is neighboring to the line path.

The following figure demonstrates the nth step in this process. Let us assume
that we have determined the pixel to be displayed at coordinate position (xn, yn).
Now we need to decide which pixel to be plotted in column xn+1. Our options are
the pixel at coordinate position (xn+1, yn) and (xn+1, yn+1).

At sampling position xn+1, we label vertical pixel separations from the
mathematical line path as d1 and d2. The y co-ordinate on the mathematical line at
pixel column position xn+1 is calculated as follows:

y = m(xn + 1) + c
d1 = y – yn

= m(xn + 1) + c – yn

and
d2 = (yn + 1) – y

= yn + 1 – m(xn + 1) + c
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The difference between these two separations is
d1 – d2 = 2m(xn + 1) – 2yn + 2c –1 ...(2.13)

The decision parameter Pn for the nth step in the line algorithm is obtained by
rearranging the equation (2.13) so that it involves only integer calculations. It can

be achieved substituting m = 
y
x

∆
∆

, where ∆y and ∆x are the vertical and horizontal
separations of the endpoints coordinate positions, and we get,

Pn = ∆x(d1 – d2)
= 2 ∆y.xn – 2 ∆x.yn + e

The sign of Pn is the same as the sign of (d1 – d2), since ∆x > 0 for this example.
Parameter e is constant and has the value 2 ∆y + ∆x(2c - 1), which is an
independent pixel at yn which is closer to the line path than to the pixel at yn+1, that
means d1 < d2, therefore the decision parameter Pn is negative. In that case, we
can plot the lower pixel, otherwise, we should plot the upper pixel.

The coordinate values that change along the line occur in either the x or y
directions depending upon the unit steps. Therefore, we can determine the values
of consecutive decision parameters by using incremental integer computations.
The decision parameter at step n + 1, can be calculated as follows:

Pn+1 = 2 ∆y.xn+1 – 2 ∆x.yn+1 + e

Therefore,
Pn+1 – Pn = 2 ∆y(xn+1 – xn) – 2 ∆x(yn+1 – yn)

Since xn+1= xn +1, therefore
Pn+1 = Pn + 2 ∆y – 2 ∆x(yn+1 – yn)

where the term (yn+1 – yn) is equal to either 0 or 1, depending upon the sign of
parameter Pn. The recursive calculations of decision parameter can be performed
at each integer x-position, starting from the left coordinate end point of the line.
The first parameter P0 can be determined at the starting pixel position (x0, y0) and

with m calculated as 
y
x

∆
∆

P0 = 2y – x
The Bresenham’s line drawing algorithm is as follows:
Step 1: Input the two line end points and store the left end points in (x0, y0).
Step 2: Load the point (x0, y0) into the frame buffer that has to be plotted as the
first point.
Step 3: Compute constants values x, y and obtain the starting coordinate value
for the decision parameter as,

P0 = 2 ∆y – ∆x
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criteria:

If Pn < 0 , the next point to plot is (xn+1, yn) and

P 0 + 1 = P0 + 2 ∆y
else

 the next point to be plotted is (xn+1, yn+1) and

P0+1= P0 + 2∆y - 2∆x

Step 5: Step 4 is repeated x times.
Implementation of Bresenham’s line algorithm using ‘C’:

/*Program to draw a Line using Bresenham’s Algorithm*/

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{

int d,ds,dt,dx,dy, gd=DETECT,gm;

float x,y,x1, y1, x2,y2, xend;

clrscr();

initgraph(&gd,&gm,”C:\tc\bgi”);

printf(“\nEnter the Values of Starting points,(x1,y1):”);

scanf(“%f %f”,&x1,&y1);

printf(“\nEnter the Values of Ending points,(x2,y2):”);

scanf(“%f %f”,&x2,&y2);

dx = x2 - x1;

dy = y2 - y1;

d = 2*dy - dx;

ds = 2*dy;

dt = 2*(dy-dx);

if(x1>x2)

 {

 x = x2;

 y = y2;

 xend = x1;

 }

else
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 {

 x = x1;

 y = y1;

 xend = x2;

 }

putpixel(x,y,BLUE);

while(x<xend)

 {

 x = x+1;

 if(d<0)

 d = d + ds;

 else

 {

 d = d + dt;

 y = y + 1;

 }

 putpixel(x,y,BLUE);

 }

getch();

}

The output of this program is as follows:

Enter the Values of Starting points,(x1,y1): 10 10

Enter the Values of Ending points,(x2,y2):160 150

 

2.3.3 Bresenham’s Circle Algorithm

Bresenham developed an incremental circle generator algorithm, which is more
efficient. Conceived for use with pen plotters, the algorithm generates all points on
a circle centered at the origin by incrementing all the way around the circle. This
algorithm uses the approach of midpoint, which is for the case of integer center
point and radius, generating the same, optimal set of pixels.
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2/R , and use the circle points procedure to display points on the complete circle.

The strategy is to select which of the two pixels is closer to the circle by evaluating
a function at the midpoint between the two pixels. In the second octant, if the pixel
at (xp, yp) has been previously chosen as closest to the circle, the choice of the
next pixel is between pixel E and SE.

                                                   P  (xp, yp)    E 

                                                                 M                   ME 

                                                                 SE 
                                                                                        MSE 

                                                  Previous   Choice    Choice 
                                                   Pixel         for          for next 
                                                                   Current    Pixel 
                                                                   Pixel 

Fig. 2.13 The Pixel Grid for Midpoint Circle Algorithm

Let F(x, y) = x2 + y2 – R2, this function is 0 on the circle, positive outside the
circle, and negative inside the circle. It can be shown that if the midpoint between
the pixel E and SE is outside the circle, then pixel SE is closer to the circle. On the
other hand, if the midpoint is inside the circle, pixel E is closer to the circle.

As for lines, we choose on the basis of the decision variable d, that is, the
value of the function at the midpoint,

dold = F(xp+1, yp 

1–
2

) = (xp+1)2 + (yp 

1–
2

 )2 – R2

If dold < 0, and E is chosen, the next midpoint will be one increment over in x.
Then,

dnew = F(xp+2, yp 

1–
2

) = (xp+2)2 + (yp 

1–
2

)2 – R2

and dnew = dold + (2 xp + 3).

Therefore the increment isE = 2 xp + 3 if dold >= 0, SE is selected, and the next
midpoint will be one increment over in x and one increment down in y, then

dnew = F(xp+2, yp 

3–
2

 ) = (xp + 2)2 + (yp 

3–
2

 )2 – R2

since dnew = dold + (2 xp – 2 yp + 5), the increment ∆SE = 2 xp – 2 yp + 5

Note that, in the linear case, ∆E and ∆SE are constant. However, in the quadratic
case, ∆E and ∆SE vary at each step and are functions of the particular values of xp
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and yp at the pixel chosen in the previous iteration. Because these functions are
expressed in terms of (xp, yp), we call P the point of evaluation. The ∆ function can
be evaluated directly at each step by plugging in the values of x and y for the pixel
chosen in the previous iteration. This direct evaluation is not expensive
computationally, since the functions are only linear.
Bresenham’s circle drawing algorithm implementation is as follows:

/*Program to Draw a Circle using Bresenham Algorithm*/

#include<graphics.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

void main()

{

int graphd=DETECT, graphm;

float x = 0,y,h,k,r;

float d = 3-(2*r);

clrscr();

initgraph(&graphd, &graphm, “C:\tc\bgi”);

printf(“\nEnter the Radius of Circle:”);

scanf(“%f”,&r);

y=r;

printf(“\nEnter the Centre coordinates, (h,k):”);

scanf(“%f %f”,&h,&k);

while(x<y)

{

 putpixel(x+h,y+k,RED);

 putpixel(y+h,x+k,RED);

 putpixel(-y+h,x+k,RED);

 putpixel(-x+h,y+k,RED);

 putpixel(-x+h,-y+k,RED);

 putpixel(-y+h,-x+k,RED);

 putpixel(y+h,-x+k,RED);

 putpixel(x+h,-y+k,RED);

 if(d<0)

 {

 d=d+(4*x)+6;

 x =x+1;
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 else

 {

 d=d+4*(x-y)+10;

 x =x+1;

 y = y-1;

 }

}

getch();

}

Following is the output of this program:
Enter the Radius of Circle: 100

Enter the Centre coordinates,(h,k): 120 130

 

Implementation midpoint circle algorithm:
#include<graphics.h>

#include<conio.h>

#include<stdio.h>

#include<math.h>

int h,k, r,sa,ea, a;

int getangle(float x,float y)

{

float q;

if(x==0)q=0;

else

{

q=atan(y/x);

}

return (q*180/3.1415);

}

Putpixel(int x,int y,int val)

{

putpixel(x,getmaxy()-y,val);
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}

void CirclePoints(int x,int y,int val)

{

a=getangle(x,y);

if(a>=sa && a<ea)

Putpixel(x+h,y+k,val);

a=getangle(y,x);

if(a>=sa && a<ea)

Putpixel(y+h,x+k,val);

a=getangle(-x,y)+180;

if(a>=sa && a<ea)

Putpixel(-x+h,y+k,val);

a=getangle(y,-x)+360;

if(a>=sa && a<ea)

Putpixel(y+h,-x+k,val);

a=(getangle(x,y)+180);

if(a>=sa && a<ea)

Putpixel(-x+h,-y+k,val);

a=(getangle(y,x)+180);

if(a>=sa && a<ea)

Putpixel(-y+h,-x+k,val);

a=getangle(-y,x)+180;

if(a>=sa && a<ea)

 Putpixel(-y+h,x+k,val);

a=getangle(x,-y)+360;

if(a>=sa && a<ea)

 Putpixel(x+h,-y+k,val);

}

void midpointcircle(int radius,int val)

{

int d=1-radius;

int deltaE=3;

int deltaSE=-2*radius+5;

int x=0;

int y=radius;

CirclePoints(x,y,val);

while(y>x)

{

if(d<0)

{
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deltaE = deltaE + 2;

deltaSE= deltaSE + 2;

}

else

{

d = d + deltaSE;

deltaE = deltaE + 2;

deltaSE = deltaSE + 4;

y = y-1;

}

x = x+1;

CirclePoints(x,y,val);

}

}

void main()

{

int gd = DETECT, gm;

int r,ch;

clrscr();

do

{

printf(“Enter the center\n”);

scanf(“%d%d”,&h,&k);

printf(“Enter the radius:\n”);

scanf(“%d”,&r);

printf(“1.CIRCLE 2.ARC 3.SECTOR 4.QUIT\n\nEnter the
choice: “);

scanf(“%d”,&ch);

if(ch==2 || ch==3)

{

printf(“\nEnter the START ANGLE: “);

scanf(“%d”,&sa);

printf(“\nEnter the END ANGLE: “);

scanf(“%d”,&ea);

}

else

{

sa=0;

ea=360;

}
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initgraph(&gd,&gm,”c:\\tc”);

midpointcircle(r,15);

if(ch==3)

{

line(h,getmaxy()-k,r*cos(-sa*3.14/180)+h,getmaxy()-
(r*sin(-sa*3.14/180)+k));

line(h,getmaxy()-k,r*cos(-ea*3.14/180)+h,getmaxy()-
(r*sin(-ea*3.14/180)+k));

}

getch();

}while(ch!=4);

closegraph();

}

The output of this program is as follows:
Enter the center 100 100

Enter the radius: 50

1.CIRCLE 2.ARC 3.SECTOR 4.QUIT

Enter the choice: 1

 

The program to draw a circle using polynomial algorithm is as folows:
#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<math.h>

void main()

{

int gd=DETECT,gm;

float x,y;

float h,k,r;

clrscr();

initgraph(&gd,&gm,”C:\tc3\bgi”);

printf(“\nEnter the Radius of Circle:”);

scanf(“%f”,&r);

printf(“\nEnter the Centre coordinates,(h,k):”);

scanf(“%f %f”,&h,&k);

for(x=0;x<=r/sqrt(2);x++)
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 y=sqrt((r*r)-(x*x));

 putpixel(x+h,y+k,RED);

 putpixel(y+h,x+k,RED);

 putpixel(-y+h,x+k,RED);

 putpixel(-x+h,y+k,RED);

 putpixel(-x+h,-y+k,RED);

 putpixel(-y+h,-x+k,RED);

 putpixel(y+h,-x+k,RED);

 putpixel(x+h,-y+k,RED);

}

getch();

}

The output of this program is as follows:
Enter the radius of Circle: 50

Enter the Centre coordinates,(h,k): 100 150

 

The circle drawing program using trigonometry function is as follows:
/*Program to Draw a Circle using Trigonometric Algorithm*/

#include<graphics.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

void main()

{

int gd=DETECT,gm;

float x,y;

float h,k,r,angle;

clrscr();

initgraph(&gd,&gm,”C:\tc3\bgi”);

printf(“\nEnter the Radius of Circle:”);

scanf(“%f”,&r);

printf(“\nEnter the Centre coordinates :”);

scanf(“%f %f”,&h,&k);

for(angle=0;angle<=90;angle=angle+0.1)
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{

 x=r*cos(angle);

 y=r*sin(angle);

 putpixel(x+h,y+k,RED);

 putpixel(y+h,x+k,RED);

 putpixel(-y+h,x+k,RED);

 putpixel(-x+h,y+k,RED);

 putpixel(-x+h,-y+k,RED);

 putpixel(-y+h,-x+k,RED);

 putpixel(y+h,-x+k,RED);

 putpixel(x+h,-y+k,RED);

}

getch();

}

The output of this program is as follows:
Enter the Radius of Circle:50

Enter the Centre coordinates :245 245

 

2.4 ELLIPSE GENERATING ALGORITHM

For simplicity, an ellipse having a centre at origin and axes (major and minor)
parallel to the coordinate axes is considered. The algebraic expression for ellipse
can be written as follows:

2

2

x
a

 + 
2

2

y
b

= 1

where, 2a = length of major axis and 2b = length of minor axis.
The above equation can also be written as follows:

b2x2 + a2y2 – a2b2 = 0,

showing an ellipse can be divided equally into four parts. So if one part (or quadrant)
can be generated then the other three parts can easily be simulated by mirroring
the original part.
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                                                                                     (0, b)        

(–a, 0)                                                         (a, 0)      X 

(0, –b) 

Fig. 2.14 An Ellipse Centered at the Origin

Let us generate the first quadrant of the ellipse. For applying the midpoint method
the first quadrant is logically divided into two regions as follows:
Region A- closer to the y-axis with absolute slope less than 1, and
Region B- closer to the x-axis with absolute slope greater than 1.

                                                                               Tangent slope = –1 

                                                             SE                                     Gradient vector 

                                            Region A 

                                                             Region B 

j component 

i component 

Gradient 
vector 

Fig. 2.15 Two Regions of the Ellipse defined at Tangent of 45°

Provided we know coordinates (xi, yi) of the pixel that lie exactly on the ellipse on
the first quadrant we need to find out the next nearest pixel(xi+1,yi+1) using
incremental integer value of the decision parameter f(x, y). As in the case of
rasterizing a line, we change the unit sampling direction (x or y direction) according
to the slope. Here, also, we keep the slope factor in mind. Starting at (0, b) and
moving clockwise along the ellipse-path in Region 1 we apply unit steps in x-
direction until we reach the boundary between Region 1 and Region 2. Then we
change to unit steps in y-direction while sampling Region 2 of the curve.

The partial derivative of function f(x, y) with respect to x and y being fx =
2b2x and fy = 2a2y respectively, the slope of the ellipse at any point (x, y) is
determined by

2

2
x

y

fdy b x
dx f a y

= − = −

While deciding whether to plot (xi +1, yi) or (xi+1, yi–1) as the (i+1)th pixel, the
choice is easily made by checking whether the halfway point (the midpoint) between
the centers of the two candidate pixels lies inside or outside the theoretical elliptical-
path. This is done by calculating f(xi + 1, yi –1/2) and checking the sign. Let,



Output Primitives

NOTES

Self-Instructional
44 Material

p1 = f(xi+1, yi 
1–
2

 ) = b2(xi+1)2 + a2(yi 
1–
2

 )2 – a2b2

Similarly,

pi + 1 = f(xi+1+1, yi+1 

1–
2

 ) = b2(xi+1+1)2 + a2(yi+1 

1–
2

 )2 – a2b2

pi + 1– p1 = b2(xi+1+1)2 + a2(yi+1 

1–
2

 )2– b2(xi+1)2 – a2(yi 
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 )2

Algorithm for ellipse:

Step 1: Input rx (the radius of major axis), ry (the radius of miner axis) and ellipse
centre (a, b) and determine the first point on ellipse centered on origin as:

(x0, y0) = (0, ry)

Step 2: To calculate the initial value of decision parameter in region 1, the value p1
is determined as:

p1 = r2
y + r2

x +1/4 r2
x

Step 3: At each xk position in Region 1 starting x = 0, we perform the following
test:
If p1k < 0 the next point along the ellipse (xk+1, yk) and p1x+1 = p1k + 2r2

yxk+1 + r2
y

Otherwise p1k > 0 the next point along the ellipse (xk+1, yk-1)
p1k+1 = p1k +2r2

yxk+1 + r2
y – 2r2

xyk+1

With 2r2yxk+1 = 2r2yxk + 2r2
y and 2r2

xyk+1 = 2r2
xyk – 2r2

x

Step 4: To determine the initial value of the decision parameter in Region 2 with
the help of the last point (x0, y0) calculated in region 1, we determine p20 as:

p20 = r2
y(x0 +1/2)2 + r2

x(y0 – 1)2 – r2
xr

2
y

Step 5: For each yk position in region 2 starting at k = 0, we perform the following
test:

if p2k > 0, the next point along the ellipse (xk, yk-1) and p2k+1 = p2k – 2r2
xyk+1

+ r2
x

if p2k < 0 the next point along the ellipse is (xk+1, yk-1) and p2k+1 = p2k –
2r2

xyk+12r2yxk+1 + r2
x with the help of the same incremental calculation for x and y

as in region 1.
Step 6: The computation of the symmetry points in other three quadrants.
Step 7: Finally we move each calculated pixel position (x, y) on to the elliptical
path with center (a, b) and plot the co-ordinates values using

x = x + a  and y = y + b
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yx > 2r2

xy.
The program to draw an ellipse using polynomial algorithm is as follows:

#include<graphics.h>

#include<conio.h>

#include<stdio.h>

#include<math.h>

void main()

{

int gdriver = DETECT,gmode;

float a,b,h,k;

float x,xend,y;

clrscr();

initgraph(&gdriver,&gmode,”C:\tc\bgi”);

printf(“\nEnter the Semi Major Axis and Semi Minor Axis:”);

scanf(“%f %f”,&a,&b);

printf(“\nEnter the Centre coordinates,(h,k):”);

scanf(“%f %f”,&h,&k);

xend=a;

for(x=0;x<=xend;x = x+0.1)

{

 y=b*sqrt(1-(x*x)/(a));

 putpixel(x+h,y+k,RED);

 putpixel(-x+h,y+k,RED);

 putpixel(-x+h,-y+k,RED);

 putpixel(x+h,-y+k,RED);

}

getch();

}

The sample output of this program is as follows:

Enter the Semi Major Axis and Semi Minor Axis: 200 150

Enter the Centre coordinates,(h,k): 200 230

 

The following program shows the applications of line and circle/arc functions for
representing the motion of a car:

#include<graphics.h>

#include<iostream.h>
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#include<conio.h>

#include<dos.h>

#include<stdlib.h>

#define PI 3.14159

void draw_wheel(int x,int y,int angle)

{

 int incr=45;

 setcolor(getmaxcolor());

 setfillstyle(EMPTY_FILL,getmaxcolor());

 for(double i = angle;i<angle+360.0;i= i + 2*incr)

 {

 sector(x,y,i,i+incr,20,20);

 arc(x,y,i+incr,i+2*incr,20);

 }

}

void draw_car(int ang)

{

int car_color=BLUE;

draw_wheel(200,200,ang);

draw_wheel(50,200,ang);

setcolor(car_color);

line(0,80,639,80);

line(25,200,0,200);

line(0,300,639,300);

line(0,160,40,160);

line(0,200,0,160);

line(70,130,170,130);

line(40,160,70,130);

line(200,160,260,160);

line(170,130,200,160);

line(260,200,225,200);

line(260,160,260,200);

line(175,200,75,200);

arc(200,200,0,180,25);

arc(50,200,0,180,25);

setfillstyle(SOLID_FILL,car_color);

floodfill(150,170,car_color);

}

void main()

{
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 void *bitmap1,*bitmap2;

 detectgraph(&graphd,&graphm);

 initgraph(&graphd,&graphm,”c:\\tc “);

 draw_car(0);

 bitmap1=malloc(imagesize(0,130,270,230));

 getimage(0,130,270,230,bitmap1);

 putimage(0,130,bitmap1,XOR_PUT);

 draw_car(22);

 bitmap2 = malloc(imagesize(0,130,270,230));

 getimage(0,130,270,230,bitmap2);

 putimage(0,130,bitmap2,XOR_PUT);

 for(i=0;!kbhit();i= i+10)

 {

 if(i>500) i=0;

 putimage(i,130,bitmap1,OR_PUT);

 delay(100);

 putimage(i,130,bitmap1,XOR_PUT);

 putimage(i+5,130,bitmap2,OR_PUT);

 delay(50);

 putimage(i+5,130,bitmap2,XOR_PUT);

 }

 closegraph();

 }

The output of this program is as follows:

The following program shows the applications of line and circle ellipse functions
for representing the motion of a kite:

#include<stdio.h>

#include<dos.h>

#include<conio.h>

#include<graphics.h>

#include<stdlib.h>

main()

{
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int graphd=0, graphm=0,i;

clrscr();

initgraph(&graphd,&graphm,”c:\\tc”);

do

{

for(i=500;i>0;i—)

{

cleardevice();

setcolor(WHITE);

delay(2);

line(140,60+i,100,100+i); //drawing line1

line(100,100+i,140,180+i); // drawing line2

line(140,180+i,180,100+i); // drawing line3

line(180,100+i,140,60+i); // drawing line4

setlinestyle(DASHED_LINE,1,3);

line(140,180+i,140,300+i); // drawing line5

setlinestyle(SOLID_LINE,1,1);

circle(95,100+i,6); // drawing circle1

circle(186,100+i,6); // drawing circle2

ellipse(140,99+i,180,360,39,16);

}

}

while(!kbhit());

getch();

closegraph();

return 0;

}

The output of this program is as follows:

The following program draws a cube and then rotates it at the desired angle:
// cube drawing with the help of line function

#include<graphics.h>

#include<iostream.h>

#include<conio.h>
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#define PI 3.14

#define offset 15

struct Edge

{

Vertices v1,v2;

};

struct Vertices

{

int x,y;

};

struct Cube

{

Vertices VerticesList[8];

Edge EdgeList[12];

};

void InitVertices(Cube &aCube,Vertices pivot,int side)

{

int i;

aCube.VerticesList[0].x = pivot.x;

aCube.VerticesList[0].y = pivot.y;

aCube.VerticesList[1].x = pivot.x+side;

aCube.VerticesList[1].y = pivot.y;

aCube.VerticesList[2].x = pivot.x+side;

aCube.VerticesList[2].y = pivot.y+side;

aCube.VerticesList[3].x = pivot.x;

aCube.VerticesList[3].y = pivot.y+side;

for(i = 4;i < 8;i++)

{

aCube.VerticesList[i].x = aCube.VerticesList[i-4].x
+ offset;

aCube.VerticesList[i].y = aCube.VerticesList[i-4].y
+ offset;

}

}

void InitEdges(Cube &aCube)

{

int i,j;

for(i=0;i<4;i++)

{
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aCube.EdgeList[i].v1 = aCube.VerticesList[i];

if(i+1 == 4)

aCube.EdgeList[i].v2 = aCube.VerticesList[0];

else

aCube.EdgeList[i].v2 = aCube.VerticesList[i+1];

}

for(i=4;i<8;i++)

{

aCube.EdgeList[i].v1 = aCube.VerticesList[i];

if(i+1 == 8)

aCube.EdgeList[i].v2 = aCube.VerticesList[4];

else

aCube.EdgeList[i].v2 = aCube.VerticesList[i+1];

}

for(i=8,j=0;i<12;i++,j++)

{

aCube.EdgeList[i].v1 = aCube.VerticesList[j];

aCube.EdgeList[i].v2 = aCube.VerticesList[j+4];

}

}

void display(Cube aCube)

{

for(int i =0;i<12;i++)

line(aCube.EdgeList[i].v1.x,aCube.EdgeList[i].v1.y,

aCube.EdgeList[i].v2.x,aCube.EdgeList[i].v2.y);

}

void rotate(Vertices &v,double angle,Vertices pivot)

{

int oldx = v.x,oldy = v.y;

oldx = oldx - pivot.x;

oldy = oldy - pivot.y;

v.x = (oldx*cos(angle))-(oldy*sin(angle));

v.y = (oldx*sin(angle))+(oldy*cos(angle));

v.x = v.x + pivot.x;

v.y = v.y + pivot.y;

}

void RotateCube(Cube aCube,double angle)

{

Vertices pivot = aCube.VerticesList[0];

for(int i = 0;i<8;i++)
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InitEdges(aCube);

display(aCube);

}

void main()

{

int gmode = DETECT,gdriver;

Cube aCube;

Vertices pivot;

int side;

double angle;

initgraph(&gmode,&gdriver,”c:\\tc”);

cout << “Enter the reference point to draw the cube:
“;

cin >> pivot.x >> pivot.y;

cout << “\nEnter the side of the cube: “;

cin >> side;

cout << “\nEnter the angle of rotation: “;

cin >> angle;

angle = (angle*PI)/180;

InitVertices(aCube,pivot,side);

InitEdges(aCube);

display(aCube);

outtextxy(50,getmaxx()-50,”Press any key to see
rotation”);

getch();

cleardevice();

RotateCube(aCube,angle);

getch();

closegraph();

}

The output of this program is as follows:
Enter the reference point to draw the cube: 100 100
Enter the side of the cube: 40
Enter the angle of rotation:15
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Press any key to see rotation

Check Your Progress

4. What is the principle on which the DDA algorithm works?
5. What is the algebraic expression of an ellipse?

2.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A point will be on the line segment if,
(i) It satisfies the equation of line segment
(ii) Its x-coordinate lies between x-coordinates of end points
(iii) Its y-coordinate lies between coordinates of end points

2. The following equations are the parametric form of a straight line:
y = y1+ (y2 – y1)t

x = x1 + (x2 – x1)t

3. A vector of zero magnitude which has no direction associated with it is
called a zero or null vector and is denoted by 0 (i.e., a thick zero).

4. The DDA algorithm works on the principle of obtaining the successive pixel
values based on the differential equation governing that line.

5. The algebraic expression for ellipse can be written as follows:

2

2

x
a

 + 
2

2

y
b

 = 1

where, 2a = length of major axis and 2b = length of minor axis.

2.6 SUMMARY

• A position in a plane is known as a point and any point can be represented
by any ordered pair of numbers (x, y), where x is the horizontal distance
from the origin and y is the vertical distance from the origin.
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Output Primitives• Any line or piece of line having end points is called a line segment.
• A vector of unit magnitude is called a unit vector. Unit vectors are often

used to represent concisely the direction of any vector.
• A vector of zero magnitude which has no direction associated with it is

called a zero or null vector and is denoted by 0.
• An ellipse having a centre at origin and axes (major and minor) parallel to

the coordinate axes is considered.
• The dot product of vectors A and B is defined as the product of the length

of vector A projected onto B times the length of vector B, or vice versa.
• The component of vector A along a direction d is equal to the dot product

of the vector A and the unit vector ̂ d which points along the direction of d.
• The cross product of two vectors (represented by) a and b is denoted by

a × b.

2.7 KEY WORDS

• Point:  A position in a plane is known as a point and any point can be
represented by any ordered pair of numbers (x, y).

• Line Segments: Any line or piece of line having end points is called a line
segment. We can find the equation of any line segment using its end points
and it can easily be checked whether any point lies on the line segment or
not.

2.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write short notes on the following:
(a) Planes (b) Points (c) Vectors

2. Derive the equation for the intercept form of the line.
3. Give the general form of the line passing through each pair of the following

points:
(a) (0, 0) and (2, 4)
(b) (1, 3) and (2, –3)
(c) (0, –1) and (–1, –1)
(d) (1.5, 1) and (3. 5, –1.5)

4. What is the role of DDA in computer graphics?
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Long Answer Questions

1. Describe the properties of a scalar product.
2. Describe the various properties of a vector product with suitable examples.
3. Differentiate between DDA and Bresenham line drawing algorithm.
4. Find the condition for which two lines are perpendicular.
5. Discuss the ellipse generating algorithm.

2.9 FURTHER READINGS
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Computer Graphics Principles and Practice. Boston: Addison Wesley.

Mukhopadhyay, A. and A. Chattopadhyay. 2007. Introduction to Computer
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UNIT 3 FILLED AREA PRIMITIVES

Structure
3.0 Introduction
3.1 Objectives
3.2 Clipping and Viewport

3.2.1 Flood Fill Algorithm; 3.2.2 Boundary Fill Algorithm
3.2.3 Scan-Line Polygon Fill Algorithm

3.3 Answers to Check Your Progress Questions
3.4 Summary
3.5 Key Words
3.6 Self Assessment Questions and Exercises
3.7 Further Readings

3.0 INTRODUCTION

In this unit, you will learn about morphing, which is a common graphics method
which is used in many commercials. Morphing is a special effect in motion
pictures and animations that changes (or morphs) one image or shape into another
through a seamless transition. You will further learn about polygon representation
and polygon filling.

3.1 OBJECTIVES

After going through this unit, you will be able to:
• Define morphing
• Discuss how to create a polygon
• Understand various types of polygon filling algorithm

3.2 CLIPPING AND VIEWPORT

Morphing is a common graphics method which is used in many commercials. It
transforms (metamorphoses) one object into another. This method is commonly
used in TV commercials: oil can take the shape of a car, a tiger can be morphed
into a bike, and one person’s face can be morphed into that of another. All these
are examples of morphing. Morphing can be applied to any motion or transition
involving a change in shape.

Polygon Representation

A many sided figure is termed as a polygon. A polygon can be represented by
using various line segments which are connected end to end. It can be defined as
a series of points which make line segments and are connected. These line segments
are called sides or edges of the polygon and the end points are called vertices.
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There are two types of polygon. These are as follows:
(i) Convex polygon
(ii) Concave polygon

Convex Polygon

If there is a line connecting two interior points of the polygon, which lies completely
inside the polygon, then the polygon is called a convex polygon (Figure 3.1).

 

 
             A 
 
B 

Fig. 3.1 Illustration of a Convex Polygon

Concave Polygon

A polygon is called a concave polygon if the line joining any of its two interior
points is not completely inside that polygon (Figure 3.2).

 
 

                                        A 

 
 
 
 
 

                                         B 
 

Fig. 3.2 Illustration of a Concave Polygon
A polygon having vertices p1, p2, p3, ……… pn is said to be positively oriented if
the visit of the vertices of the polygon in the given order produces an anticlockwise
loop (Figure 3.3(a). Similarly, if the visit of the vertices of the polygon in the given
order produces a clockwise loop, then it is said to be negatively oriented (Figure
3.3(b).

 A                                           B                           U                                            V 

                    D                                           C                            X                                      W 

        

                             A                                           B                           U                                            V

                    D                                           C                            X   

 (a) Positive orientation                                         (b) Negative orientation

Fig. 3.3 Polygon Orientations
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Filled Area PrimitivesThere are many methods to represent polygons. Some graphical devices supply a
polygon drawing primitive to directly image polygon shape and a polygon can be
saved as a unit on these devices. And some devices provide a trapezoid primitive.
Trapezoids can be formed by two scan lines and two line segments and can be
drawn by stepping down the line segments with two vector generators and, for
each scan line, filling in all the pixels between them. Every polygon can be broken
up into trapezoids. In other words any polygon can be represented by a series of
trapezoids.

How to Create a Polygon

There are two main points needed to make a polygon and to enter it into the
display file: the number of sides of polygon and the vertex points. This can be done
with the help of two types of coordinates: absolute co-ordinates and relative
coordinates.

Algorithm for absolute coordinates

The algorithm for absolute coordinates is as follows:
(i) Input the array containing the vertices of the polygon.

(a) The number of sides of the polygon
(b) Coordinates of current pen position and a variable for stepping through

the polygon sides.
(ii) Check the number of sides that is 3 or greater than 3, if less than 3, then

return invalid polygon.
(iii) Enter the basic instructions for the polygon, i.e., current pen position and

number of sides.
(iv) Finally enter the instructions for the sides and return.

Algorithm for relative coordinates

The algorithm for relative coordinates is as follows:
(i) Input the array containing the relative offset the vertices of the polygon

(a) The number of sides of the polygon
(b) Coordinates of current pen position and a variable for stepping through

the polygon sides
(ii) Check the number of sides that is 3 or greater than 3, if less than 3, then

return invalid polygon.
(iii) Increment the current pen position.
(iv) Save the starting point for closing the polygon.
(v) Enter the polygon instructions, i.e., number of sides.
(vi) Enter the instructions for sides and close the polygon then return.
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Inside and Outside Test

Polygons can be represented in two ways. The first representation is in the form of
an outline using move commands. The second representation is in the form of solid
objects by setting the pixel high inside the polygon including the pixel on the
boundary. The method of finding whether or not a point is inside a polygon is an
important issue. There are two approaches to do this. These are as follows:

(i) Even-odd method
(ii) Winding number method

Even-odd method

Those who use this method draw a line segment between the point in question and
a point known to be outside the polygon. Just select a point with an x-coordinate
smaller than the smallest x-coordinate of the polygon vertices then draw a line
from any position to the distant point chosen outside the coordinate extents of the
object and counting the number of edges crossing along the line. If the number of
polygon edges crossed by this line is odd, then the point is interior to the polygon,
otherwise the point is exterior to the polygon. If we want to find the accurate
counting of the edges, then we should select the path which does not intersect the
vertices of the polygon.

                                                                                                                           3 

         1 
                                2 

Fig. 3.4 Illustration of Even-Odd Method

In Figure 3.4, the line segment from point ‘1’ crosses a single edge, so the point is
inside the polygon (because 1 is an odd number). The line from point ‘3’ crosses
two edges so the point is outside the polygon. Similarly point ‘2’ is inside the
polygon because the line from it crosses a single edge. When a line intersects the
vertices of a polygon, then counting is done as follows:

(i) The counting is taken as even if the other end points of the two segments
meet at the intersecting vertex.

(ii) The counting is taken as odd if both the endpoints lie on the opposite sides
of the constructed line.
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Fig. 3.5 (a) Odd Count (Total Count = 1), (b) Even Count (Total Count =2)

Winding number method

Winding number method is another method to define the interior region of a polygon.
In this approach we count the number of times the edges of a polygon wind around
a particular point in the clockwise direction and we give each boundary line crossed
a direction number and we add these direction numbers. The direction number
indicates the direction of the polygon edge relative to the line segment we construct
for the test. For example to test a given point (x1, y1) let us consider a horizontal
line segment that sums from the outside of the polygon to (x1, y1). Then we find all
the sides which cross the given line segment. There are two approaches for a side
to cross a given line segment. The side could be drawn starting below the line, then
cross it, and finally end above the line. In this case we assign the direction number
‘–1’ to this side. If the edge starts above the line and finishes below it, then we
assign the direction number ‘1’ to this side. The sum of direction numbers of the
sides which cross the horizontal line gives the winding number for the point. If the
winding number is non-zero then the point is inside the polygon, otherwise it is
outside the polygon.

                                                       -1                                    +1                                             -1 

Fig. 3.6 Computation of Winding Numbers

From Figure 3.6, you can see that the line segment crosses a single edge and has
–1 as the direction number, which is nonzero hence the point is inside the polygon.
Similarly we can see from the second diagram that the line crosses two edges and
has –1, +1 as the direction number respectively. in which case the winding number
= (–1) + (+1) = 0. So the point is outside of the polygon.
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Polygon Filling

Polygon filling is the process by which an area of a polygon is coloured. Area may
be defined as the total number of pixels that outline a polygon. A polygon that is
defined by the total number of pixels is called an interior defined polygon. The
algorithms used for filling the area of an interior defined polygon are known as
flood fill algorithms. A polygon that is defined by the bounding pixels that outline it
is called a boundary defined polygon. The algorithms that are used to fill the area
of a boundary defined polygon are termed as boundary fill algorithms.

 

Fig. 3.7 (a) An Illustration of Flood-Fill, (b) An Illustration of Boundary-Fill

It is clear that flood fill algorithms and boundary fill algorithms need some starting
point inside a polygon, which is called a seed. Therefore, these algorithms are also
called seed fill algorithms. These algorithms assume that at least one point interior
to the polygon is known to us. Then the algorithm tries to find the all other pixels
interior to the polygon and subsequently colours them. There are three types of
seed fill algorithms.

(i) Flood Fill Algorithm
(ii) Boundary Fill Algorithm
(iii) Scan-Line Fill Algorithm

3.2.1 Flood Fill Algorithm

In this method we start from the given initial interior pixel, i.e., the seed. From this
seed, the algorithm inspects all the surrounding pixels. The surrounding pixels can
be seen in the following two ways:

(i) Four-connected approach: In this approach we check the pixel to the
left, right, top, and below from the starting position, i.e., the seed

Fig. 3.8 Four-Connected Approach
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left, right, top, below and also check diagonally, which is shown by the
following diagram:

Fig. 3.9 Eight-Connected Approach

The following algorithm is shown for the four-connected approach:
Procedure Flood fill (x, y, fillcolour, oldcolour: integer)

begin

if getpixel(x, y) = oldcolour then

Setpixel(x, y, fillcolour)

Floodfill(x+1, y, fillcolour, oldcolour);

Floodfill(x-1, y, fillcolour, oldcolour);

Floodfill(x, y+1, fillcolour, oldcolour);

Floodfill(x, y-1, fillcolour, oldcolour);

end

The algorithm will work for the eight-connected approach if we also add the
following calls to the four-connected approach

Floodfilll(x+1, y-1, fillcolour, oldcolour);

Floodfilll(x+1, y +1,fillcolour, oldcolour);

Floodfilll(x-1, y+1, fillcolour, oldcolour);

Floodfilll(x-1, y-1, fillcolour, oldcolour);

3.2.2 Boundary Fill Algorithm

In this algorithm we start at a point inside the polygon and paint with a particular
colour. The filling continues until a boundary colour is encountered. There are also
two ways to do this. These are as follows:

(i) Four-connected fill where we propagate: left, right, up, and down
(ii) Eight-connected fill where we propagate: left, right, up, down and diagonally

also
The algorithm for the four-connected filling approach can be given as follows:

Procedure Four Fill (x, y, fillcol, boundcol: integer);

Var

  currcolour: integer;

Begin
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  currcolour: = inquirecolour(x, y)

  If(currcolour <> bound colour) and (curr_colour <>
fill_col) then

  Begin

    Setpixel(x, y, fill_col)

    FourFill(x+1, y, fill_col, bound_col);

    FourFill(x-1, y, fill_col, bound_col);

    FourFill(x, y+1, fill_col, bound_col);

    FourFill(x, y-1, fill_col, bound_col);

The following problem illustrates four fill:

                                                                                                                                   

 

Would not fill
this area 

Fig. 3.10 Boundary Filling

This leads to the point (ii) wherein eight-connected fill algorithm tests all eight
adjacent pixels.

 

Fig. 3.11 Eight Adjacent Pixels

So we add the calls:

eightfill (x+1, y-1, fill_col, bound_col);

eightfill (x+1, y+1, fill_col, bound_col);

eightfill (x-1, y-1, fill_col, bound_col);

eightfill (x-1, y+1, fill_col, bound_col);
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This algorithm tries to find the intersection point of the boundary of a polygon and
its scan-lines. These pixels are used to define the pixels inside the polygon. These
pixels are set to the required colour. The scan conversion algorithm locates the
intersection points of the scan-line with each edge of the polygon. This is done for
all the scan-lines starting from left to right. The intersections are grouped and the
interior pixel values are set to the colour of the polygon.

        

Fig. 3.12 Scan Line Convex Polygon Filling

Fig. 3.13 Scan Line Concave Polygon Filling

When a scan line intersects a polygon vertex, it may require special handling.

Check Your Progress

1. Name the two types of polygons.
2. List the methods to find whether or not a point is inside a polygon.
3. What is polygon filing?
4. What are flood filled algorithms?
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3.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. There are two types of polygon. These are as follows: (i) Convex polygon
(ii) Concave polygon.

2. The method of finding whether or not a point is inside a polygon is an
important issue. There are two approaches to do this. These are as follows:
(i) Even-odd method (ii) Winding number method

3. Polygon filling is the process by which an area of a polygon is coloured.
4. The algorithms used for filling the area of an interior defined polygon are

known as flood filled algorithms.

3.4 SUMMARY

• Morphing is a common graphics method which is used in many commercials.
It transforms (metamorphoses) one object into another.

• A polygon can be represented by using various line segments which are
connected end to end. It can be defined as a series of points which make
line segments and are connected.

• Even-odd method draw a line segment between the point in question and a
point known to be outside the polygon.

• Winding number method is another method to define the interior region of a
polygon.

• Polygon filling is the process by which an area of a polygon is coloured.
Area may be defined as the total number of pixels that outline a polygon. A
polygon that is defined by the total number of pixels is called an interior
defined polygon.

• This algorithm tries to find the intersection point of the boundary of a polygon
and its scan-lines. These pixels are used to define the pixels inside the
polygon. These pixels are set to the required colour.

• A polygon can be represented by using various line segments which are
connected end to end.

3.5 KEY WORDS

• Morphing: It is a common graphics method which is used in many
commercials.

• Interior Defined Polygon: A polygon that is defined by the total number
of pixels is called an interior defined polygon.
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pixels that outline it is called a boundary defined polygon.

• Boundary Fill Algorithms: The algorithms that are used to fill the area of
a boundary defined polygon are termed as boundary fill algorithms.

3.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is morphing?
2. What are the two approaches to find whether or not a point is inside the

polygon?

Long Answer Questions

1. Explain the term polygon filling.
2. Explain the following algorithms:

i.  Flood fill algorithm
ii.  Boundary fill algorithm
iii.  Scan line fill algorithm
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BLOCK - II
2D TRANSFORM AND CLIPPING

UNIT 4 2D GEOMETRICAL
TRANSFORM

Structure
4.0 Introduction
4.1 Objectives
4.2 Translation, Rotation and Scaling
4.3 Reflection and Shear Transform

4.3.1 Reflection
4.3.2 Shear

4.4 Answers to Check Your Progress Questions
4.5 Summary
4.6 Key Words
4.7 Self Assessment Questions and Exercises
4.8 Further Readings

4.0 INTRODUCTION

You can create a variety of pictures and graphs using the methods that display
output primitives and related attributes. Changing or manipulating displays is also
required in many applications. Facility layouts and design applications can be created
by arranging the orientations and sizes of the component parts of a scene.
Animations can be produced by moving the capturing unit or the objects in a
scene along animation paths. Changes in shape, size and orientation can be
accomplished with geometric transformations that are responsible for altering the
coordinate descriptions of objects. As far as the primitive graphic operations are
concerned, the basic geometric transformations are translation (shifting the position
of an object in the plane), rotation (rotating an object in the plane), and scaling
(changing the size of an object in the plane). Other transformations that are often
applied to objects include shear and reflection. In this unit, you will learn the general
procedures for applying translation, rotation, and scaling parameters to relocate
and resize two-dimensional objects.

4.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand translation
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• Explain rotation and scaling
• Understand reflection and shear transformations

4.2 TRANSLATION, ROTATION AND SCALING

A translation is a transformation that is applied to an object by repositioning it
along a straight-line path from one coordinate (location) to another. We can translate
a two-dimensional point by adding translation distances, tx and ty, to the original
position (x, y) to move the point to a new coordinate position (x′, y′) .

x′ = x + tx, and y′ = y + ty ….(4.1)

The translation distance pair (tx, ty) is called a translation vector or shift vector. By
this operation the position of a point is shifted tx in x-direction and ty in y-direction.
We can represent the translation equations 4.1 as a single matrix equation by using
column vectors to represent coordinate positions and the translation vector.

                                                                                                        .  P′ (x′, y′) 

                                 .   
                               P (x, y) 

Fig. 4.1 Translation of a Point from Position P to P′  with Translation Vector T
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By using this we can write the two-dimensional translation equations in the following
matrix form:

P′ = P + T ...(4.3)

Often matrix-transformation equations are represented in terms of coordinate
row vectors instead of column vectors. We can write the matrix representations as
P = [x, y] and T = [tx, ty] since the column-vector representation for a point is a
standard mathematical notation. A translation can be treated as a rigid-body
transformation which shifts the objects without deformation (twist). That means
that every point on the object is shifted by the same amount. We can translate a
straight line segment by using the transformation equation 4.3 for each of the line
end-points and redrawing the line between the new endpoint positions. Shapes
like polygons can be translated by adding the translation vector to the coordinate



2D Geometrical
Transform

NOTES

Self-Instructional
68 Material

position of each vertex and regenerating the polygon using the new set of vertex
coordinates and the current attribute settings.
Figure 4.2 illustrates the application of a specified translation vector to move an
object from one position to another. Similar approaches can be used to translate
curved objects. On the other hand, to change the position of an ellipse or circle,
we translate the centre coordinates and redraw the figure at a new location. We
translate other curves (like splines) by displacing the coordinate positions defining
the objects, then the curve paths using the translated coordinate points are
reconstructed.
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Fig. 4.2 Moving an Object from one Position to Another
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                         ),( rr yx                                  P 

Fig. 4.3 Rotation of a Rigid Object through an Angle ϕ about the Point
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/*Program for Translation of a Triangle*/

#include<stdio.h>

#include<conio.h>

#include<graphics.h>

#include<dos.h>

void main()

{

int gd=DETECT,gm,tx,ty;

initgraph(&gd,&gm,”C:\tc3\bgi”);

clrscr();

setbkcolor(RED);

line(100,100,130,150);

line(70,150,130,150);

line(70,150,100,100);

printf(“\nEnter the Values ,tx,ty:”);

scanf(“%d %d”,&tx,&ty);

clearviewport();

line(100+tx,100+ty,130+tx,150+ty);

line(70+tx,150+ty,130+tx,150+ty);

line(70+tx,150+ty,100+tx,100+ty);

}

The output of this program is as follows
Enter the Values ,tx,ty: 100 110

Rotation

Two-dimensional rotation can be applied to any kind of object by repositioning it
along a circular path in the two-dimensional plane. To initiate a rotation, we have
to specify a rotation angle ϕ and the position  of the rotation point (also called
pivot point) about which the object is supposed to be rotated. This is illustrated in
Figure 4.5. The counterclockwise rotations about the pivot point can be defined
by positive values for the rotation angle, as shown in Figure 4.4, and negative
values rotate the objects in the clockwise direction. We can also describe
transformation as a rotation about a rotation axis which is perpendicular to the xy
plane and passes through the rotation point. First of all, we determine the
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transformation equations for rotation of a point position (say P) when the rotation
(pivot) point is at the coordinate origin.

                                                           (xnew, ynew) 

                                       r                                       (x, y) 

                                                 ϕ 

                              θ 

Fig. 4.4  Illustration of Rotation of a Point from Position (x, y) to Position (xnew, ynew)

Figure 4.4 illustrates the rotation of a point from initial position (x, y) to a new
position (xnew, ynew) through an angle ϕ relative to the coordinate origin. The angle
q is the original angular displacement of the point from the x axis. In this figure, r is
the radial (fixed) distance of the point from the origin, angle θ is the original angular
position of the point from the horizontal (y = 0), and Φ is the rotation angle. With
the help of standard trigonometric identities, we can represent the transformed
(final) coordinates in terms of angles Φ and θ by equation 4.4

cos( ) cos cos sin sin
sin( ) sin cos cos sin

new

new

x r r r
y r r r

θ θ θ
θ θ θ

= + Φ = Φ − Φ
= + Φ = Φ + Φ ….(4.4)

The original coordinates (x, y) of the point in polar coordinates can be represented
as

cos , and sinx r y r= Φ = Φ ….(4.5)

Substituting expressions of equations 4.5 with 4.4, we can obtain the transformation
equations for rotation of a point at position (x, y) through an angle Φ about the
origin as follows:

cos sin
sin cos

new

new

x r y
y x y

= Φ − Φ
= Φ − Φ ….(4.6)

With the column-vector representations given by equation 4.2 for coordinate
positions, we are able to write the rotation equations in the following matrix form:

P′ = R.P ...(4.7)

where the rotation matrix is

                               
cos sin
sin cos

R
Φ − Φ 

=  Φ Φ 
...(4.8)
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The matrix product in rotation as given by equation 4.7, is transposed when
coordinate positions are represented as row vectors instead of column vectors,
so that the transformed row coordinate vector [xnew, ynew] is calculated as follows:

           
TT PRP ).(' =

       TT RP .=  

where PT = [x, y] and the transpose RT of matrix R can be obtained by interchanging
the rows and columns. The transpose is obtained by simply changing the sign of
the sine terms for a rotation matrix. The rotation of a point about a random pivot
position is illustrated in Figure 4.5. Using the trigonometric relationships in this
figure, we can generalize equation 4.6 to obtain the transformation equations for
rotating a point about some specified rotation position (xr yr) as follows:

                                                           (xnew, ynew) 

                                       r                                       (x, y)

                                                 ϕ 

                              θ 

          (xr  yr) 

Fig. 4.5 Rotation of a Point from Position (x, y) to Position (xnew, ynew)  by an
Angle ϕ  about Rotation Point (xr yr).

( )cos ( )sin
( )sin ( ) cos

new r r r

new r r r

x x x x y y
y y x x y y y

= + − Φ − − Φ
= + − Φ + − Φ ...(4.9)

These general rotation equations differ from equation 4.6 by the inclusion of
additive terms, as well as the multiplicative factors on the coordinate values. Thus,
the matrix expression given by equation 4.7 can be modified to include: pivot
coordinates by matrix addition of a column vector whose elements contain the
additive (translational) terms in equation 4.9. However, there are better ways, to
formulate such matrix equations.

Like translations, rotations are also rigid-body transformations such that
objects move without deformation. Every point available on the object is rotated
through the same angle. We can rotate a straight line segment by applying the
rotation formula given in equation 4.9 to each of the line end points and re-drawing
the line between the new end point positions. Polygons can be rotated by displacing
each vertex through the specified rotation angle and re-generating the polygon
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with the help of the new vertices. The curves can be rotated by repositioning the
defining points and redrawing the curves. For example, an ellipse or a circle can
be rotated about any point by moving the centre position through an arc that
subtends the particular rotation angle. We can rotate an ellipse about its centre
coordinates by rotating the minor and major axes.
The following is the program of wheel rotation and translation parallel to x-axix:

#include<graphics.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

#define PI 3.14159

void rotate_wheel(int xc,int yc,int t)

{

int x,y;

for(t=t;t<180;t=t+60)

{

x=50*cos(t*PI/180);

y=50*sin(t*PI/180);

line(xc+x,yc+y,xc-x,yc-y);

}

circle(xc,yc,50);

circle(xc,yc,52);

}

void main()

{

int gd=0,gm=0,x;

initgraph(&gd,&gm,”c:\\tc”);

for(x=0;x<640;x++)

{

setcolor(RED);

rotate_wheel(x,240,x%60);

delay(5);

cleardevice();

rotate_wheel(x,240,x%60);

}

getch();

closegraph();

}
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The output of this program is as follows:

 

Scaling

Scaling is that transformation which alters the size of an object. This operation is
carried out for polygons by multiplying the coordinate values (x, y) of each vertex
with scaling factors Sx (in x direction) and Sy (in y direction) to produce the
transformed coordinates (xnew, ynew) as follows:

. , .new x new yx x S y y S= = ...(4.10)

The scaling factor Sx scales the object in the x-direction, and Sy scales the object
in the y-direction. The transformation equations 4.10 can also be written in the
following matrix form:

new

new

x
y

 
 
 

= 
0

0
.x

y

S x
S y

   
   

  
...(4.11)

or P′ = S . P ...(4.12)

where S is the 2 × 2 scaling matrix in equation 4.11. Any positive numeric value
(integer or float) can be assigned to the scaling factors Sx and Sy. The values of
scaling factors less than 1 reduce the size of objects, and the values greater than 1
produce an enlargement. The size of the object remains unchanged for a value of
1 for both Sx and Sy. A uniform scaling is produced that maintains relative object
proportions when Sx and Sy are assigned the same value. Different values for Sx
and Sy result in a differential scaling which is often used in design applications. The
construction of pictures from a few basic shapes can be adjusted by scaling and
positioning transformations.

The objects transformed by using equation 4.11 are both scaled and
repositioned. The scaling factors with values greater than 1 are responsible to
move coordinate positions further from the origin, while values less than 1 are
responsible to move objects closer to the coordinate origin. Figure 4.2 represents
the scaling of a line by assigning the value 0.50 to both scaling factors Sx and Sy in
equation 4.11. The line length as well as the distance from the origin is reduced by
a scaling factor of 0.50.

The location of a scaled object can be controlled by choosing a position,
called the fixed point, which remains unchanged after the scaling transformation.
The coordinates for the fixed point (xf, yf,) are chosen as one of the vertices, the
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object centroid, or any other position on the object. A polygon can then be scaled
relative to the fixed point by scaling the distance from each vertex to the fixed
point. The scaled coordinates (xnew, ynew) for a vertex with coordinates (x, y), can
be calculated as follows:

( ) and ( )new f f x new f f yx x x x S y y y y S= + − = + − ...(4.13)

We can write these scaling transformations to separate the multiplicative and additive
terms:

. (1 )

. (1 )
new x f x

new f y

x x S x S
y y Sy y S

= + −

= + − ...(4.14)

where the additive terms xf(l – Sx) and yf(l – Sy) are constant terms for all points on
the object. Including coordinate for a fixed point in the scaling equations is similar
to including coordinates for a pivot point in the rotation equations. A column vector
is set up first whose elements are the constant terms in equation 4.14, and then this
column vector is added to the product S.P in equation 4.12. A detailed discussion
in the next section is given on matrix formulation for transformation equations that
involve only matrix multiplications.

Polygons are scaled by applying transformations given by equation 4.14 to
each vertex and then regenerating the polygon using the transformed vertices.
Other objects are scaled by applying the scaling transformation equations to the
parameters defining the objects. An ellipse in standard position is resized by scaling
the semi-major and semi-minor axes and redrawing the ellipse about the designated
centre coordinates. Uniform scaling of a circle is performed by simply adjusting
the radius. Then the circle is redisplayed about the centre coordinates using the
transformed radius.

Check Your Progress

1. What is translation?
2. How is scaling carried out for polygons?

4.3 REFLECTION AND SHEAR TRANSFORM

The basic transformations such as translation, rotation, and scaling are incorporated
in most graphics softwares. Some softwares provide a few additional
transformations which are useful in several applications. Two such kinds of
transformations are reflection and shear.

4.3.1 Reflection

Reflection is a transformation that produces a parallel mirror image of an object.
The mirror image for a two-dimensional reflection can be generated relative to an
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axis of reflection by rotating the object by 180° about the reflection axis. An axis
of reflection can be chosen in the XY-plane or perpendicular to the XY-plane.
When the reflection axis is across a line in the XY-plane, the rotation path about
this axis will be in a plane perpendicular to the XY-plane. For reflection of the axes
that are perpendicular to the XY-plane, the rotation path is in the XY-plane. Examples
of reflection about line y = 0 are as follows:

                                              Y 
                                          1                       

                                                                     2                       3 

                                                                                                                    X 

                                                                     2′                     3′ 

                                                                    1′ 

Original 
Position 

Reflected 
Position 

Fig. 4.6 Reflection of an Object about X-axis

The reflection of the object about the line y = 0 (i.e., the X-axis), can be
accomplished with the following transformation matrix:

1 0 0
0 1 0
0 0 1

 
 − 
  

....(4.15)

This transformation keeps x-values the same, but flips the y values of the coordinate
positions. The resulting orientation of an object after it has been reflected about
the x-axis is shown in Figure 4.6. To envision the rotation transformation path for
this reflection, we can consider a flat object moving out of the XY-plane and rotating
180° through the three-dimensional space about the x-axis and back into the XY-
plane on the other side of the x-axis. A reflection about the y-axis flips x-coordinates
while the y-coordinates remain the same. The transformation matrix for this is as
follows:

1 0 0
0 1 0
0 0 1

− 
 
 
  

...(4.16)
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Fig. 4.7 Reflection of an Object about the Y-axis

Figure 4.7 illustrates the change in the position of an object that has been reflected
about the line x = 0. The equivalent rotation in this case is 180° through three
dimensional space about the axis. We flip both the x and y coordinates of a point
by reflecting relative to an axis that is perpendicular to the XY-plane and that
passes through the coordinate origin. This transformation, referred to as a reflection
relative to the coordinate origin, has the following matrix representation:

1 0 0
0 1 0
0 0 1

− 
 − 
  

....(4.17)

An example of reflection about the origin is shown in Figure 4.8. The reflection
matrix 4.17 is the rotation matrix R(ϕ) with ϕ = 180. We are simply rotating the
object in the xy-plane half a revolution about the origin. Reflection given by equation
4.17 can be generalized to any reflection point in the xy-plane (see Figure 4.9).
This reflection is the same as a 180° rotation in the xy-plane using the reflection
point as the pivot point. If we chose the reflection axis as the diagonal line y = x
(see Figure 4.10), the reflection matrix is

0 1 0
1 0 0
0 0 1

 
 
 
  

...(4.18)
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Reflected 
Position 

Fig. 4.8 Reflection of an Object Relative to an Axis Perpendicular to xy-plane

We can derive this matrix by concatenating a sequence of rotation and coordinate-
axis reflection matrices. One possible sequence is shown in figure 4.10. Here, we
first perform a clockwise rotation through a 45° angle, which rotates the line y = x
onto the x-axis. Next, we perform a reflection with respect to the x axis. The final
step is to rotate the line y = x back to its original position with a counterclockwise
rotation through 45°. An equivalent sequence of transformations is first to reflect
the object about the x-axis, and then to rotate it counterclockwise 90°.

Line y = x 

Original Position 

Reflected Position 

Fig. 4.9 Reflection of an Object about the Line y = x.

To obtain a transformation matrix for reflection about the diagonal y = –x, we can
concatenate matrices for the transformation sequence as follows:

(i) Clockwise rotation by 45°,
(ii) Reflection about the y-axis, and
(iii) Counterclockwise rotation by 45°.
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The resulting transformation matrix is as follows:

0 1 0
1 0 0

0 0 1

− 
 − 
  

....(4.19)

Figure 4.9 shows the original and final positions for an object transformed with
this reflection matrix. Reflections about any line in the xy-plane can be obtained
with a combination of translation-rotation-reflection transformations. This way,
we first translate the line so that it passes through the origin (0, 0). Then we rotate
the line onto one of the coordinate axes and reflect it about that axis. Finally, we
bring back the line to its original position with the inverse rotation and translation
transformations, respectively. We can implement reflections with respect to the
coordinate axes or coordinate origin as scaling transformations with negative scaling
factors. Also, elements of the reflection matrix can be set to values other than ±l.
Values whose magnitudes are greater than 1 shift the mirror image farther from the
reflection (a) axis, and values with magnitudes less than 1 bring the mirror image
closer to the reflection axis.

                        y = x 

                45°                                                                                                            45° 

Fig. 4.10 A Sequence of Transformations to Produce Reflection about the Line y = x

Figure 4.10 (a) shows a clockwise rotation of 45°. Figure 4.10 (b) shows reflection
about the x-axis. Figure 4.10 (c) shows a counterclockwise rotation of 45°.
The following is a C++ program for scaling and reflection:

// Both Scaling and reflection across y = mx + c of a Home
#include <graphics.h>
#include <iostream.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
class Point
{

public:
float x,y;
Point(float tx, float ty)
{
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x = tx;
y = ty;

}
Point translate(int dx, int dy)
{

Point temp(x + dx, y + dy);
return temp;

}
Point scale(float sx, float sy, int tx, int ty)
{
Point temp(x, y);
temp = temp.translate(-tx, -ty).scale(sx,
sy).translate(tx, ty);
return temp;
}
Point scale(float sx, float sy)
{

Point temp(sx * x, sy * y);
return temp;

}
Point reflect_x()
{

Point temp(x, -y);
return temp;

}
Point rotate(float theta)
{

float tr = theta * M_PI / 180.0;
Point temp(x*cos(tr) - y*sin(tr), x*sin(tr) +

y*cos(tr));
return temp;

}

};
void draw_home(Point &p1, Point &p2, Point &p3, Point
&p4, Point &p5)
{

line(p1.x, p1.y, p2.x, p2.y);
line(p2.x, p2.y, p3.x, p3.y);
line(p3.x, p3.y, p4.x, p4.y);
line(p4.x, p4.y, p1.x, p1.y);
line(p5.x, p5.y, p1.x, p1.y);
line(p5.x, p5.y, p2.x, p2.y);

}
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int main()
{

int gd, gm, choice;
detectgraph(&gd, &gm);
initgraph(&gd, &gm, “c:\\tc\\bgi”);
float sx, sy, x, y, theta, m, c;
Point p1(60, 20), p2(80, 20), p3(80, 40), p4(60, 40),
p5(70, 10);
while(1)
{

draw_home(p1, p2, p3, p4, p5);
cout << “1. Scaling with respect to 0,0,” << endl;
cout << “2. Scaling with respect to arbitary point”

<< endl;
cout << “3. Reflection about line y = mx + c” <<

endl;
cout << “4. Exit” << endl;
cout << “Input the choice : “;
cin >> choice;
switch(choice)
{

case 1 : cout << “Input sx and sy: “ << endl;
cin >> sx >> sy;

draw_home( p1.scale(sx, sy), p2.scale(sx, sy),
p3.scale(sx, sy), p4.scale(sx, sy), p5.scale(sx, sy));

break;
case 2 : cout << “Input sx and sy : “;

cin >> sx >> sy;
cout << “Input x and y : “;
cin >> x >> y;

draw_home( p1.scale(sx, sy, x, y), p2.scale(sx, sy, x,
y), p3.scale(sx, sy, x, y), p4.scale(sx, sy, x, y),
p5.scale(sx, sy, x, y));

break;
case 3 : cout << “Input m and c values : “;

cin >> m >> c;
draw_home(p1, p2, p3, p4, p5);
line(0, c, 640, m*640 + c);
theta = atan(m) * 180.0 / M_PI;
draw_home(

p1.translate(0,-c).rotate(theta).reflect_x().
rotate(theta).translate(0,c),
p2.translate(0,-c).rotate( theta).reflect_x().
rotate(theta).translate(0,c),
p3.translate(0,-c).rotate(-theta).reflect_x().
rotate(theta).translate(0,c),
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p4.translate(0,-c).rotate(-theta).reflect_x().
rotate(theta).translate(0,c),
p5.translate(0,-c).rotate(-theta).reflect_x().
rotate(theta).translate(0,c));

break;
default : exit(0);

}
getch();
cleardevice();

}
closegraph();
return 0;

}

The output of this program is as follows:

 

1. Scaling with respect to 0,0

2. Scaling with respect to arbitary point

3. Reflection about line y = mx + c

4. Exit

Input the choice :1

Input sx and sy: 2 2

1. Scaling with respect to 0,0

2. Scaling with respect to arbitary point

3. Reflection about line y = mx + c

4. Exit
 

4.3.2 Shear

Shear is a transformation that distorts (disturbs) the shape of an object such that
the transformed shape of the object appears as if the object were made of several
internal layers that had been caused to slide over each other. Two common shearing
transformations are those that shift a coordinate in the x-direction and those that
shift it in the y-direction. An x-direction shear relative to the x-axis can be represented
by the following transformation matrix:
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1 0
0 1 0
0 0 1

SHx 
 
 
  

...(4.20)

which transforms the coordinate positions as
xnew = x + SHx . y, and ynew = y ...(4.21)

Line y =- x 

Original Position 

Reflected Position 

Fig. 4.11 Reflection with Respect to the Line y = –x

Any real (float) value can be assigned to the shear parameter SHx. The coordinate
position (x, y) can be shifted horizontally by an amount proportional to its distance
(y-value) from the x-axis (y = 0). Setting SHx = 2 changes the square into a
parallelogram (as shown in Figure 4.12). The negative values for SHx are responsible
to shift coordinate positions to the left. We can generate shears in the x-direction
relative to other reference lines with,

1 .
0 1 0
0 0 1

x x refSH SH y− 
 
 
  

....(4.22)

with coordinate positions transformed as,
xnew = x + SHx (y – yref), and ynew = y ....(4.23)

An example of this shearing transformation is given in Figure 4.13 for a shear
parameter value of 0.5 relative to the line yref = –1.
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            Y                                                                   Y 

       (0, 1)                      (1, 1)                                                                  (2, 1)                              (3, 1)

     (0, 0)                    (1, 0)                      X         (0, 0)                    (1, 0)                     X 
                  (a)        (b) 

Fig. 4.12 (a) A Unit Square (b) Conversion into a Parallelogram using the
x-direction Shear Matrix 4.20 with SHx = 2.

A y-direction shear relative to the line x = xref is generated with the following
transformation matrix:

1 0 0
1 .

0 0 1
y y refSH SH x

 
 − 
  

...(4.24)

which generates transformed coordinate positions

' , and ' ( )x refx x y SH x x y= = − + ...(4.25)

    

            Y                                                                         Y 
 
   (0, 1)                         (1, 1)                                                               (1, 1)                    (2, 1) 
 
  
                                                                                                                                                                    
 
 

   (0, 0)                  (1, 0)                                                      (0.5, 0)              (1.5, 0)      
 
 

 
yref  = -1                                                              yref  = -1 
 
            
           (a)                                                                         (b) 

Fig. 4.13 A Unit Square (a) is Transformed to a Shifted Parallelogram
(b) with SHx = 0.5 and yref = –1

This transformation shifts coordinate position vertically by an amount proportional
to its distance from the reference line x = xref . Figure 4.14 illustrates the conversion
of a square into a parallelogram with SHy = 0.5 and xref = –1. Shearing operations
can be expressed as sequences of basic transformation. The x-direction shear
matrix 4.20, can be written as a composite transformation involving a series of
rotation and scaling matrices that would scale the unit square of figure 4.12 along
its diagonal, while maintaining the original lengths and orientations of edges parallel
to the x-axis. Shifts in the positions of objects relative to shearing reference lines
are equivalent to translations.
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                                  Y                                                                        Y                     (1, 2) 

                                                                                                    (0, 1.5) 
                       

                            (0, 1)                         (1, 1)                                                               (1, 1)           

 
                                                                                                   (0, 0.5)                                                                                         
          xref  = –1                                                              xref  = –1 

                        (0, 0)                  (1, 0)                                                 
                     (a)                                                                       (b) 

Fig. 4.14 A Unit Square is transformed into a Shifted Parallelogram with
SHy = 1 /2 and xref = –1

The following program performs rotation and shearing on a rectangle:
#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

#include <math.h>

#include <graphics.h>

class Point

{

public:

float x, y;

Point(float tx, float ty)

{

x = tx;

y = ty;

}

Point shear(float a, float b)

{

Point temp(x+(a*y), y+(b*x));

return temp;

}

Point translate(int dx, int dy)

{

Point temp(x + dx, y + dy);

return temp;

}

Point rotate(float theta, int tx, int ty)

{
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Point temp(x, y);

temp = temp.translate(-tx, -
ty).rotate(theta).translate(tx, ty);

return temp;

}

Point rotate(float theta)

{

float tr = theta * M_PI / 180.0;

Point temp(x*cos(tr) - y*sin(tr), x*sin(tr) +
y*cos(tr));

return temp;

}

};

//function fefining for drawing rectangle using line
function

void draw_rectangle(Point &lt, Point &rt, Point &lb, Point
&rb)

{

line(lt.x, lt.y, rt.x, rt.y);

line(rt.x, rt.y, rb.x, rb.y);

line(rb.x, rb.y, lb.x, lb.y);

line(lb.x, lb.y, lt.x, lt.y);

}

int main()

{

int graphd, graphm, choice;

float dx, dy, theta;

//Defining the coordinates of the rectangle

Point p1(200, 200), p2(350, 200), p3(200, 300), p4(350,
300);

detectgraph(&graphd, &graphm);

initgraph(&graphd, &graphm, “c:\\tc\\tc\\bgi”);

while(1)

{

draw_rectangle(p1, p2, p3, p4);

cout << “1. Rotation about origin followed by
translation” << endl;

cout << “2. Rotation about arbitary point” << endl;

cout << “3. Applying X-shear and Y-shear” << endl;

cout << “4. Exit” << endl;

cout << “Input your choice : “;
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cin >> choice;

switch(choice)

{

case 1 : cout << “Input angle of rotation : “;

cin >> theta;

cout << “Input x and y translation values “;

cin >> dx >> dy;

draw_rectangle(p1.rotate(theta),
p2.rotate(theta), p3.rotate(theta),

p4.rotate(theta));

draw_rectangle(p1.rotate(theta).translate(dx, dy),

p2.rotate(theta).translate(dx, dy),

p3.rotate(theta).translate(dx, dy),

p4.rotate(theta).translate(dx, dy));

break;

case 2 : cout << “Input angle of rotation : “;

cin >> theta;

cout << “Input rotation point : “;

cin >> dx >> dy;

draw_rectangle(p1.rotate(theta, dx, dy),

p2.rotate(theta, dx, dy),

p3.rotate(theta, dx, dy),

p4.rotate(theta, dx, dy));

break;

case 3 : cout << “Input x and y shear values : “;

cin >> dx >> dy;

draw_rectangle(p1.shear(0, 0), p2.shear(0,
dy),

p3.shear(dx, 0), p4.shear(dx, dy));

break;

default : exit(0);

break;

}

getch();

cleardevice();

}
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closegraph();

return 0;

}

Check Your Progress

3. What is reflection?
4. What is a shear?

4.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A translation is a transformation that is applied to an object by repositioning
it along a straight-line path from one coordinate (location) to another.

2. Scaling is carried out for polygons by multiplying the coordinate values
(x, y) of each vertex with scaling factors Sx (in x direction) and Sy
(in y direction) to produce the transformed coordinates.

3. Reflection is a transformation that produces a parallel mirror image of an
object.

4. Shear is a transformation that distorts (disturbs) the shape of an object such
that the transformed shape of the object appears as if the object were made
of several internal layers that had been caused to slide over each other.

4.5 SUMMARY

• A translation is a transformation that is applied to an object by repositioning
it along a straight-line path from one coordinate (location) to another.

• Two-dimensional rotation can be applied to any kind of object by
repositioning it along a circular path in the two-dimensional plane.

• Scaling is that transformation which alters the size of an object. This operation
is carried out for polygons by multiplying the coordinate values (x, y) of
each vertex with scaling factors Sx (in x direction) and Sy (in y direction) to
produce the transformed coordinates (xnew ,ynew ).

• The homogenous parameter h can be chosen to be any nonzero value for
two-dimensional geometric transformations. Thus, there are an infinite number
of equivalent homogeneous representations to each coordinate point (x, y).

4.6 KEY WORDS

• Translation: It involves shifting the position of an object in the plane.
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• Rotation: It involves rotating an object in the plane.
• Scaling: It involves changing the size of an object in the plane.

4.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a note on the following:
(i). Translation
(ii. Rotation

(iii) Scaling
2. Write a procedure to continuously rotate an object about a pivot point.
3. Show that the composition of two rotations is additive.

Long Answer Questions

1. Write a program for translation of a triangle.
2. Explain the process of translation‚ rotation and scaling.
3. Explain the reflection and shear transform.

4.8 FURTHER READINGS
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5.0 Introduction
5.1 Objectives
5.2 Matrix Representations and Homogeneous Coordinates
5.3 Composite Transformations

5.3.1 Consecutive Scaling
5.3.2 General Pivot-Point Rotation
5.3.3 General Fixed-Point Scaling
5.3.4 Transformations for Scaling
5.3.5 Concatenation Properties
5.3.6 General Composite Transformations and Computational Efficiency
5.3.7 Transformation of Coordinate System

5.4 Answers to Check Your Progress Questions
5.5 Summary
5.6 Key Words
5.7 Self Assessment Questions and Exercises
5.8 Further Readings

5.0 INTRODUCTION

The most common basic geometric transformations are translation, scaling and
rotation. In translations an object is moved in a straight-line path from one position
to another. In rotations an object is moved from one position to another in a
circular path around a specified pivot point (rotation point). In scaling, the dimensions
of an object are changed relative to a specified fixed point. You can express two-
dimensional geometric transformations as 3×3 matrix operators, so that sequences
of transformations can be concatenated into a single composite matrix. It can be
considered as an efficient formulation since it allows you to reduce computations
by applying the composite matrix to the initial coordinate positions of an object to
obtain the final transformed positions. To perform this, you need to express two-
dimensional coordinate positions as three-element column or row matrices. A
column-matrix representation can be chosen for coordinate points because this is
the standard mathematical convention in many graphics applications.

5.1 OBJECTIVES

After going through this unit, you will be able to:
• Describe matrix representations and homogeneous coordinates
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• Explain composite transformations
• Explain the concatenation properties

5.2 MATRIX REPRESENTATIONS AND
HOMOGENEOUS COORDINATES

There are so many graphics applications that involve sequences of geometric
transformations. For example, an animation may require an object to be translated
and rotated at each increment of the motion along a linear path. We perform
translations, rotations, and scaling, in design and picture construction applications,
to fit the picture components into their proper positions. Now, we consider how
the matrix representations discussed in the earlier sections can be reformulated so
that such transformation sequences can be efficiently processed. Earlier, we have
seen that each of the basic transformations are expressed in the following general
matrix form

P′ = 1 2' .P M P M= + ...(5.1)

where the coordinate positions P and P’ are represented as column vectors. Matrix
M1 is a 2×2 array containing multiplicative factors, and matrix M2 is a two-element
column matrix containing translational terms. For translation, matrix M1 is the identity
matrix. For rotation and scaling, matrix M2 contains the translational terms associated
with the rotation point or scaling fixed point. We must calculate the transformed
coordinates, one step at a time, to produce a sequence of transformations with
these equations, such as scaling followed by rotation and then translation. First,
coordinate positions are scaled and then these scaled coordinates are rotated,
and finally the rotated coordinates are translated. A more efficient approach can
be to combine a sequence of transformations so that the final coordinate positions
are obtained directly from the initial coordinates, by eliminating the calculation of
intermediate coordinate values. To make it practical, we need to reformulate the
equation 5.1 to eliminate the matrix addition associated with the translation terms
represented by matrix M2. Now, we can combine the multiplicative and translational
terms for two-dimensional geometric transformations into a single matrix
representation by expanding the 2×2 matrix representations into 3×3 matrices.
This operation expresses all transformation equations as matrix multiplications,
provided that the matrix representations are expended for coordinate positions
also. For the representation of any two-dimensional transformation as a matrix
multiplication, we need to represent each Cartesian coordinate point (x, y) with
the homogeneous coordinate triple (xh, yh, h), where

, andh hx yx y
h h

= = ...(5.2)

The homogenous parameter h can be chosen to be any nonzero value for
two-dimensional geometric transformations. Thus, there are an infinite number of
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equivalent homogeneous representations to each coordinate point (x, y). A
convenient choice can be simply to set the homogenous parameter h = 1. We can
represent each two dimensional position having homogeneous coordinates (x, y,
1). Other values for homogeneous parameter h are also desirable in matrix
formulations of three-dimensional (3D) viewing transformations. We use the term
homogenous coordinates in mathematics to refer to the effect of this demonstration
on Cartesian equations. Then we convert a Cartesian point (x, y) to a homogeneous
representation (xh, yh, h), equations having x and y, such as become homogeneous
equation having three attributes xh, yh, and h. Representing positions in a
homogeneous coordinate represents all kinds of geometric transformation equations
in the form of matrix multiplications. We can represent the coordinates with three-
element column vectors, and transformation operations as 3 × 3 matrices. For
translation representation in matrix form, we have,

1 0
0 1 .

1 0 0 1 1

new x

new y

x t x
y t y
     
     =     
          

...(5.3)

which can be written in the reduced form as,
P′ = T(tx, ty) . P ...(5.4)

with T(tx, ty) as the 3×3 translation matrix in equation 5.3. We can obtain the
inverse of the translation matrix by replacing the translation parameters tx and ty
with their negatives values that means –tx and –ty. In the same way, we can write
the rotation transformation equations about the coordinate origin as following:

cos sin 0
sin cos 0 .

1 0 0 1 1

new

new

x x
y y

Φ − Φ     
     = Φ Φ     
          

...(5.5)

or as P′ = R(F) . P ...(5.6)

We can write the rotation transformation operator R(Φ) as a 3 × 3 matrix as given
by equation 5.5 with the rotation parameter Φ. The inverse rotation matrix can be
obtained when Φ is replaced with –Φ. Finally, a scaling transformation relative to
the coordinate origins can be expressed as the matrix multiplication

0 0
0 0 .

1 0 0 1 1

new x

new

x S x
y Sy y
     
     =     
          

...(5.7)

or as,
P′ = S(Sx, Sy) . P ....(5.8)

where, S(Sx, Sy) is the 3 × 3 matrix in equation 5.7 with attributes Sx and Sy. By
replacing these attributes with their multiplicative inverses (i.e., 1/Sx and 1/Sy) the
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inverse scaling matrix is produced. Matrix representations can be considered as
standard methods for implementation of transformations in graphics. Rotation and
scaling functions produce transformations in many systems with respect to the
coordinate origin, as given by equations 5.5 and 5.7. We then handle the rotations
and scaling relative to other reference positions as a chain of transformation
operations. An alternate approach in a graphics package is to provide parameters
in the transformation functions for scaling fixed-point coordinates and the pivot-
point  coordinates General rotation and scaling matrices that include the pivot or
fixed point are then set up directly without the need to invoke a succession of
transformation functions.

5.3 COMPOSITE TRANSFORMATIONS

With the matrix representations of the previous section, a set-up for a matrix can
be made for any series of transformations. This set-up is determined by the product
of matrices of the individual transformations. The formation of products of
transformation matrices is often referred to as a composition or concatenation of
matrices. For column-matrix representation of coordinate positions, we form
composite transformations by multiplying matrices in order from right to left. That
is, each successive transformation matrix pre-multiplies the product of the preceding
transformation matrices.

Translations

If two successive translation vectors 11( , )x yt t and 22( , )x yt t can be applied to a
coordinate position P, then the final transformed coordinate position is P’, which
can be calculated as,

P′ 2 2 1 1 2 2 1 1' ( , ) . ( ( , ). ) ( ( , ) . ( , )).x y x y x y x yP T t t T t t P T t t T t t P= = ...(5.9)

where P and P′ are represented as homogeneous-coordinate column vectors.
This result can be verified by calculating the matrix product for the two associative
groupings. This way the composite transformation matrix for this succession of
translations can be represented as,

2 1 1 2

2 11 1 2

1 0 1 0 1 0
0 1 . 0 1 0 1
0 0 1 0 0 0 0 1

x x x x

y y y y

t t t t
t t t t

+     
     = +     
          

...(5.10)

It can also be represented as,

2 2 1 1 1 2 1 2( , ) . ( , ) ( , )x y x y x x y yT t t T t t T t t t t= + + ...(5.11)

which represents two successive translations that are additive in practice.
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Rotations

If two successive rotations are applied to a point P, then the transformed position
is P′ represented as

2 1 2 1' . .P R( ) . {R( ) P } {R( ) . R( )} P= ϕ ϕ = ϕ ϕ ...(5.12)

As we multiply the two rotation matrices, we can easily observe that the two
successive rotations are additive,

1 2 1 2( ) . ( ) ( )R R Rϕ ϕ ϕ ϕ= + ...(5.13)

As a result we get the composite rotation matrix,

1 2' ( ) .P R P= ϕ + ϕ ...(5.14)

5.3.1 Consecutive Scaling

The concatenation of transformation matrices for two consecutive scaling operations
produces the composite scaling matrix that can be represented as following:

1 2 1 2

1 2 1 2

0 0 0 0 . 0 0
0 0 . 0 0 0 . 0
0 0 1 0 0 1 0 0 1

x x x x

y y y y

S S S S
S S S S

     
     =     
          

...(5.15)

It can also be written as,

1 1 2 2 1 2 1 2( , ) . ( , ) ( . , . )x y x y x x y yS S S S S S S S S S S=

....(5.16)

The resulting matrix in this case shows that the successive scaling operations are
multiplicative in nature. That is, if we are about to triple the size of an object two
times in a chain, the final size would be nine times of the original size.

5.3.2 General Pivot-Point Rotation

With the help of a graphics software that only provides a rotate function for rotating
objects about the coordinate origin, we can generate rotations about any selected
pivot (rotation) point  by performing the following sequence of translate-rotate-
translate operations:

(i) Translation of the object such that the rotation -point position is shifted to
the coordinate origin.

(ii) Rotation of the object about the coordinate origin.
(iii) Translation of the object such that the rotation point is returned to its original

position.
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This transformation sequence is illustrated in Figure 5.1.

                             (a)                                (b)                                    (c)                             (d) 

 . 
   (x, y) 

 . 
   (x, y) 

   . 

   . 

Fig. 5.1 The Composite Transformation

Figure 5.1 (a) shows the original position of the object and the rotation point.
Figure 5.1 (b) shows the translation of the object such that the rotation point is at
the origin. Figure 5.1 (c) shows the rotation of the object. Figure 5.1 (d) shows
the translation of the object such that the rotation point is returned to (Xy, Yy).
A transformation sequence for rotating an object about a specified pivot point
using the rotation matrix R(ϕ) of transformation 5.5 is as follows:

 

1 0 cos sin 0 1 0 cos sin (1 cos ) sin
0 1 . sin cos 0 . 0 1 sin cos (1 cos ) sin
0 0 1 0 0 1 0 0 1 0 0 1

r r r r

r r r r

x x x y
y y y x

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

− − − − +       
       − = − −       
              

1 0 cos sin 0 1 0 cos sin (1 cos ) sin
0 1 . sin cos 0 . 0 1 sin cos (1 cos ) sin
0 0 1 0 0 1 0 0 1 0 0 1

r r r r

r r r r

x x x y
y y y x

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

− − − − +       
       − = − −       
              

...(5.17)

The above equation can also be written as

( , ) . ( , ) ( , , )r r r r r rT x y T x y R x y ϕ− − = ...(5.18)

where T(–xr, –yr) = T-1. In general, we can define a rotation function to accept
parameters for rotation-point coordinates, as well as the rotation angle (by which
the object has to be rotated), and to generate automatically the rotation matrix of
equation 5.17.

5.3.3 General Fixed-Point Scaling

Figure 5.2 illustrates a transformation chain to produce scaling with respect to a
chosen fixed position (xt, yt) using a scaling function that can only scale the object
with respect to the coordinate origin:

(i) By translating the object so that the fixed point coincides with the coordinate
origin.

(ii) Then by scaling the object with respect to the coordinate origin.
(iii) Finally applying the inverse translation to step (i) to return the object to its

original position.
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The concatenation of these matrices for these three operations generates the desired
scaling matrix as,

1 0 0 0 1 0 0 (1 )
0 1 . 0 0 . 0 1 0 (1 )
0 0 1 0 0 1 0 0 1 0 0 1

t x t x t x

t y t y t y

x S x S x S
y S y S y S

− −       
       − = −       
              

...(5.19)

This equation can also be written as

( , ) . ( , ) . ( , ) ( , , , )t t x y x y t t x yT x y S S S   T S S S x y S S− − =

...(5.20)

This transformation is automatically generated on graphics systems that produce a
scale function accepting coordinates for the fixed point general scaling directions.
The program for scaling is as follows:

#include<graphics.h>

#include<stdio.h>

#include<process.h>

#include<conio.h>

void initscreen(float hx[],float hy[])

{ line(0,getmaxy()/2,getmaxx(),getmaxy()/2);

line(getmaxx()/2,0,getmaxx()/2,getmaxy());

drawhome(hx,hy);

}

void drawhome(float hx[],float hy[])

{ int i;

int cx=getmaxx()/2;

int cy=getmaxy()/2;

for(i=0;i<4;i++)

line(cx+hx[i],cy-hy[i],cx+hx[i+1],cy-hy[i+1]);

line(cx+hx[4],cy-hy[4],cx+hx[0],cy-hy[0]);

}

void main()

{  int graphd=DETECT, graphm,ch,i,px,py,lx1,lx2,ly1,ly2;

float sx,sy,mx,my,x,y,m,c,thx[5],thy[5];

float hx[]={40.0,10.0,10.0,70.0,70.0};

float hy[]={80.0,50.0,10.0,10.0,50.0};

initgraph(&graphd,& graphm,”c:\\tc”);

initscreen(hx,hy);

do
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{ printf(“\nEnter the choice from Menu”);

printf(“\n1.Scale with respect to 0,0”);

printf(“\n2.Scale with respect to arbitrary point”);

printf(“\n3.reflect arbitrary point”);

printf(“\n4.exit”);

scanf(“%d”,&ch);

switch(ch)

{ case 1: cleardevice();

initscreen(hx,hy);

for(i=0;i<=4;i++)

{ thx[i]=hx[i];

thy[i]=hy[i];

}

printf(“\n”);

printf(“Enter the scale value of x and y
axis”);

scanf(“%f%f”,&sx,&sy);

for(i=0;i<=4;i++)

{   thx[i]=thx[i]*sx;

thy[i]=thy[i]*sy;

}

drawhome(thx,thy);

break;

case 2: cleardevice();

initscreen(hx,hy);

for(i=0;i<=4;i++)

{ thx[i]=hx[i];

thy[i]=hy[i];

}

printf(“\nEnter the reference point”);

scanf(“%d%d”,&px,&py);

printf(“\n”);

printf(“Enter the scale value of x and y axis”);

scanf(“%f%f”,&sx,&sy);

for(i=0;i<=4;i++)

{  thx[i]= thx[i] - px;

thy[i]= thy[i] - py;

}

for(i=0;i<=4;i++)

{  thx[i]= thx[i]*sx;
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thy[i]= thy[i]*sy;

}

for(i=0;i<=4;i++)

{  thx[i] = thx[i] + px;

thy[i]= thy[i] + py;

}

drawhome(thx,thy);

break;

case 3: cleardevice();

initscreen(hx,hy);

printf(“\n”);

printf(“Enter the line y = mx + c with m amd c
value”);

scanf(“%f%f”,&m,&c);

if(m>0||m<0)

{ lx1=0;

ly1=c;

lx2=(getmaxy()-c)/m;

ly2=getmaxy();

}

if(m==0)

{  lx1=0;

ly1=c;

lx2=getmaxx();

ly2=c;

}

if(m>=9999)

{  lx1=lx2=c;

ly1=0;

ly2=getmaxy();

}

for(i=0;i<=4;i++)

{  thx[i]= hx[i];

thy[i]= hy[i];

}

for(i=0;i<=4;i++)

{  x = thx[i];

y = thy[i];

if(m==0)

{  thx[i]= x;
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thy[i]= c+(c-y);

}

if(m>0||m<0)

{  thx[i]=2*((m*m*y+x)-c*m*m)/((1+m*m)*m)-
x;

thy[i]=2*(c+m*m*y+x)/(1+m*m)-y;

}

if(m>=9999)

{  thy[i]=y;

thx[i]=c+(c-x);

}

}

drawhome(thx,thy);

line(getmaxx()/2+lx1,getmaxy()/2-ly1,getmaxx()/
2+lx2,getmaxy()/2-ly2);

break;

case 4: exit(1);

}

}while(ch!=4);

}

The output of this program is as follows:
Enter the choice from Menu 
1.Scale with respect to 0,0 
2.Scale with respect to arbitrary point 
3.reflect arbitrary point 
4.exit 2 
Enter the reference point 1 1 
Enter the scale value of x and y axis 2 2 
 
1.Scale with respect to 0,0 
2.Scale with respect to arbitrary point 
3.reflect arbitrary point 
4.exit 
 
 
 
 
 
 
 
 
 
 

5.3.4 Transformations for Scaling

Parameters Sx and Sy scale objects along the x and y directions respectively. We
can scale an object in other directions by rotating the object to align the desired
scaling directions with the coordinate axes before applying the scaling transformation.
Suppose we want to apply scaling factors with values specified by parameters Sl
and S2 in the directions shown in figure 5.3.
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                        (a)                             (b)                               (c)                                    (d) 

 . 
   (x, y) 

 . 
   

 

. 

 

   . 
 

Fig. 5.2 A Transformation Sequence for scaling an Object with Respect to a
Specified Fixed Position using the Scaling Matrix S(Sx, Sy) of Transformation 5.7.

Figure 5.2(a) shows the original position of the object. Figure 5.2 (b) shows the
translation of the object such that the centre of object is origin. Figure 5.2 (c)
shows the scaling of the object 1 with respect to the origin. Figure 5.2 (d) shows
the translation of the object so that the fixed point is returned to the position.

To accomplish scaling with out changing the orientation of the object, we
first carry out a rotation so that the directions for S1 and S2 coincide with the x and
y-axes, respectively. Then the scaling transformation is applied, followed by an
opposite rotation to return the points to their original orientations. The composite
matrix resulting from the product of these three transformations is as follows:

2 2cos sin ( )cos sin 01 2 2 1
1 2 2( ). ( , ). ( ) ( ) cos sin sin cos 01 2 2 1 1 2

0 0 1

S S S S

R S S S R S S S S

Φ + Φ − Φ Φ
− Φ Φ = − Φ Φ Φ + Φ

 
 
 
 
  

...(5.21)

                                                                                                 S1 

                                                                                                       Φ 

      S2 

Fig. 5.3 Scaling Parameter S1 and S2 applied in Orthogonal Directions defined by
the Angular Displacement Φ
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As an example of this scaling transformation, we turn a unit square into a
parallelogram (see Figure 5.4) by shifting it along the diagonal from (0, 0) to
(1, 1). We rotate the diagonal onto the y-axis and double its length with the
transformation parameters Φ = 45°, S1 = 1, and S2 = 2. In equation 5.21, we
assumed that scaling was to be performed relative to the origin. We could take
this scaling operation one step further and concatenate the matrix with translation
operators, so that the composite matrix would include parameters for the
specification of a scaling fixed position.

5.3.5 Concatenation Properties

The major property of matrix multiplication is associativeness. For any three
matrices, A, B, and C, the matrix product A.B.C can be performed by first
multiplying A and B or by B and C and finally multiplying the remaining term with
the result of first multiplication:

A.B.C = (A.B).C = A.(B.C) ...(5.22)

Therefore, matrix products can be evaluated using either a left-to-right or a right-
to-left order. Generally, the products of transformation may not be commutative,
that means the matrix product A.B may not be equal to B.A.

                                                                                                                                    (2, 2) 

   (0, 1)                         (1, 1)                                   (0.5, 1.5) 

                                                                                                                        (1.5, 0.5)                                    

      (0, 0)               (1, 0)                                              (0, 0)      

Fig. 5.4 A Square is Transformed into a Parallelogram using the
Composite Transformation Matrix

This means that if we have to rotate and translate an object, we must be vigilant
about the order in which the composite matrix is evaluated (Figure 5.5). For some
special cases, like a chain of transformations (all of the same type), multiplication
of transformation matrices is commutative in nature. As an example, two successive
rotations can be performed in any order and the final position would be the same.
Also, this commutative property is applicable for two successive translations or
two successive scalings. Another commutative couple of operations is rotation
and uniform scaling, that means Sx = Sy.

5.3.6 General Composite Transformations and Computational
Efficiency

A general two-dimensional transformation, representing a combination of
translations, rotations, and scaling, can be expressed as
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' .
1 0 0 1 1

xx xy x

yx yy y

x rs rs trs x
y rs rs trs y
     
     =     
          

….(5.23)

The four attributes rsxx, rsxy, rsyx , and rsyy are the multiplicative rotation-scaling
terms in the transformation which are involved in only rotation angles and scaling
factors. The elements trsx and trsy are the translational terms containing a
combination of pivot-point, translation distances, fixed-point coordinates, scaling
parameters and rotation angles. For example, if an object has to be scaled and
rotated about its centroid coordinates represented by , and then translated, the
values for the attributes of the composite transformation matrix are as follows:

( , ). ( , , ). ( , , , )x y c c c c x yT t t R x y S x y s sϕ  =

cos sin (1 cos ) sin
sin cos (1 cos ) sin
0 0 1

x y c x c y x

x y c y c x y

s s x s y s t
s s y s x s t

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− − + + 
 − − + 
  

...(5.24)

      (a) Translation followed by rotation    (b) Rotation followed by translation 

Final Position Final Position 

Fig. 5.5 Reversing the Order Transformations in which the Sequence of Transformations
performed may affect the Final Transformed Position of the Object

Although matrix equation 5.23 requires six additions and nine multiplications, the
open calculations for the transformed coordinates are given by equation 5.25.

x′ = x.rSxx + y.rSxy + trSx,  y′ = x.rSyx + y.rSyy + trSy
...(5.25)

Thus we only need to perform four additions and four multiplications to transform
the coordinate positions. This shows the maximum number of calculations required
for any transformations chain, once the individual matrix is concatenated and the
elements of the composite matrix are evaluated. Without performing concatenation,
individual transformations can be applied one at a time and the number of
computations can be drastically increased. Therefore, the efficient completion of
the transformation operations is to formulate transformation matrices, concatenation
of any transformation sequence, and computation of transformed coordinates using
equation 5.25. The direct matrix multiplications with the composite transformation
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matrix of equation 5.23 can be equally efficient on parallel systems. A general
rigid-body transformation matrix, containing only rotations and translation, can
easily be represented by the following matrix:

0 0 1

xx xy x

yx yy y

r r tr
r r tr
 
 
 
  

....(5.26)

where the four elements rxx, rxy, ryx, and ryy are the multiplicative rotation terms,
and elements trx and try are the translational terms. The change in rigid-body
coordinate position is also sometimes referred to as a rigid-motion transformation.
All angles and distances between coordinate positions are unchanged by the
transformation. In addition, matrix 5.40 has the property that its upper-left 2 × 2
sub-matrix is an orthogonal matrix. This means that if we consider each row of the
sub-matrix as a vector, then the two vectors (rxx, rxy) and (ryx, ryy) form an orthogonal
set of unit vectors (having unit length),

2 2 2 2 1xx xy yx yyr r r r+ = + = ...(5.24)

and the vectors are perpendicular (their dot product is 0 because of cos 90° = 0),

. . 0x x x y y x y yr r r r+ = ...(5.28)

Therefore, if these unit vectors are transformed by the rotation sub-matrix, (rxx,
rxy) is converted to a unit vector along the x-axis and (ryx, ryy) is transformed into a
unit vector along the y-axis of the coordinate system. This is given as follows:

0 1
0 . 0

0 0 1 1 1

xx xy xx

yx yy xy

r r r
r r r
     
     =     
          

...(5.29)

0 0
0 . 1

0 0 1 1 1

xx xy yx

yx yy yy

r r r
r r r
     
     =     
          

...(5.30)

For example, the following rigid-body transformation first rotates an object through
an angle ϕ about a pivot point  and then translates:

( , ). ( , , )x y r rT t t R x y ϕ =
cos sin (1 cos ) sin
sin cos (1 cos ) sin

0 0 1

r r x

r r y

x y t
y x t

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− − + + 
 − − + 
  

....(5.31)

Here, orthogonal unit vectors in the upper-left 2-by-2 sub-matrix are (cosϕ, –
sinϕ) and (sinϕ, cosϕ), and
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sin cos 0 . sin 0
0 0 1 1 1

ϕ ϕ ϕ
ϕ ϕ ϕ

−     
     − =     
          

...(5.32)

Similarly, unit vector (sinϕ, cosϕ) is converted by the transformation matrix in
equation 5.46 to the unit vector (0, l) in that direction. The orthogonal property of
rotation matrices is useful for constructing a rotation matrix when we know the
final orientation of an object rather than the amount of angular rotation necessary
to put the object into that position. Directions for the desired orientation of an
object can be determined by the alignment of certain objects in a scene or by
selected positions in the scene. Figure 5.6 shows an object that is to be aligned
with the unit direction vectors A and B . Assuming that the original object orientation,
as shown in Figure 5.6(a), is aligned with the coordinate axes, we construct the

desired transformation by assigning the elements of A  to the first row of the rotation
matrix and the elements of B  to the second row. This can be a convenient method
to obtain the transformation matrix for rotation within a local coordinate system
when we know the final orientation vectors.

Since rotation calculations require trigonometric evaluations and several
multiplications for each transformed point, computational efficiency can become
an important consideration in rotation transformation. In animations and other
applications that involve many repeated transformations and small rotation angles,
we can use approximations and iterative calculations to reduce computations in
the composite transformation equations. When the rotation angle is small,
trigonometric functions can be replaced with approximation values based on the
first few terms of their power-series expansions. For small enough angles (less
than 5°), cosϕ is approximately 1 and sinj has a value very close to the value of ϕ
in radians. If we are rotating in small angular steps about the origin, for instance,
we can set cosϕ to 1 and reduce transformation calculations at each step to two
multiplications and two additions for each set of coordinates to be rotated as
follows:

xnew = x – y.sinϕ,   and ynew = x.sinϕ + y ...(5.33)

where sinϕ is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the
rotation angle decreases. But even with small rotation angles, the accumulated
error over many steps can become quite large. We can control the accumulated
error by estimating the error in xnew and ynew at each step and resetting object
positions when the error accumulation becomes too great. Composite
transformations often involve inverse matrix calculations. Reflections and shears
are transformation sequences for general scaling directions.
As we have noted, inverse matrix representations for basic geometric
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transformations can be generated with simple procedures. An inverse translation
matrix is obtained by changing the signs of the translation distances, and an invert
rotation matrix is obtained by performing a matrix transpose (or changing the sign
of the sine terms).

                                           Y                                                                   Y 
                                                                                          B  

                                                                                                                            A  

                                                                        X                                                                  X 
                                        (a)                                                                (b) 

Fig. 5.6 The Rotation Matrix for Rotating an Object from Original Position (a) to
Position (b)

 The rotation matrix for rotating an object from original position (a) to position
(b) can be constructed with the values of the unit orientation vectors and relative
to the original orientation

These operations are much more simple than direct inverse matrix
calculations. An implementation of composite transformations is given in the following
procedure. Matrix M can be initialized to the identity matrix. As each individual
transformation is specified, it is concatenated with the total transformation matrix
M. When all transformations have been specified, this composite transformation is
applied to a given object. For this example, a polygon is scaled and rotated about
a given reference point. Then the object is translated. Figure 5.7 shows the original
and final positions of the polygon transformed by this sequence.

 

 

   200 
 
 
   150 
 
                                                       Reference Point 
  100                                                     (100, 100) 
 
 
    50 
 
 
 
                        50       100        150       200                                         50       100        150       200 

 
Fig. 5.7 A Polygon (a) is Transformed into (b) by the Composite Operations by

a C Program Given below

5.3.7 Transformation of Coordinate System
So far we have discussed geometric transformation of 2D objects which are
well defined with respect to a global coordinate system, also called the world
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coordinate system(WCS) –the principal frame of reference. But it is often found
convenient to define quantities (independent of the WCS) with respect to a local
coordinate system, also called the model coordinate system or the user
coordinate system(UCS). While the UCS may vary from entity to entity and as
per convenience, the WCS being the master reference system remains fixed for a
given display system. Once you define an object “locally” you can place it in the
global system simply by specifying the location of the origin and orientation of the
axes of the local system within the global system, then mathematically transforming
the point coordinates defining the object from local to global system. Such
transformations are known as the transformation between the coordinate systems.
Here we will briefly discuss only the transformations between two cartesian frames
of reference.

Fig. 5.8 The coordinates of point P w.r.t local cood.sys X´O´Y´ is, (xl,yl) while its
coordinates w.r.t. WCS XOY is (xg, yg)

Local to global: Fig. 5.8 shows two cartesian systems global XOY and local
X´OY´ with coordinate origins at (0,0) and (x0, y0) respectively and with an of
angle θ  between the X and X´ axes. To transform object descriptions (xl, yl)
w.r.t. local system to that (xg, yg) w.r.t. global system we need to follow the following
two steps that superimpose the XOY frame to the X´O´Y´ frame.

Step 1

Translation: So that origin ‘O’ of the XY system moves to origin ‘O’ sof the
X´Y´ system.

Transformation matrix:
















=

100
10
01

][ 0

0

, 00
y
x

T yxT

Step 2

Rotation: So that X aligns with X´ and Y aligns with Y´
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Transformation matrix:















 −
=

100
0cossin
0sincos

][ θθ
θθ

θTT

So the global coordinates (xg, yg) of point P are expressed in terms of its
known local coordinate (xl, yl) as,















































 −
=

















1100
10
01

100
0cossin
0sincos

1
1

1

0

0

y
x

y
x

y
x

g

g

θθ
θθ

Global to Local: Unlike the previous case, if the object is originally defined in
the global XY system then to transform its description in local X´Y´ system (Fig.
5.8). we have to superimpose local X´O´Y´ frame to the global XOY frame. So
the transformations required this time are,

1.















−
−

=−−

100
10
01

][ 0

0

, 00
y
x

T yxT and

2.















−=−

100
0cossin
0sincos

][ θθ
θθ

θRT

The description of point P in the local system is given by
































−
−
















−=

















1100
10
01

100
0cossin
0sincos

1
0

0

1

1

g

g
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x

y
x

y
x

θθ
θθ

Now will it make any difference if we first rotate and then translate the objects?
(Refer problem 15)

Note:

• Shear A different category of transformation that distorts the shape of
an object such that the transformed shape appears as if the object were
composed of internal layers that had been caused to slide over each other.
When an X direction shear relative to the X axis is produced, the original
coordinate position (x, y) is then shifted by an amount proportional to its
distance ‘y’ from the X axis (y = 0), i.e.

xx x sh  y
y y

 where shx = shear parameter in the positive X direction.
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the corresponding transformation matrix is,

















100
010
01 xsh

Fig. 5.9 A unit square is transformed to a parallelogram
following a X direction shear with shx = 2

Based on the same principle,-shear in the X direction relative to a line
parallel to the X axis, (y = k) –shear in the Y direction relative to Y axis or
parallel to Y axis (x = h) can be formulated.

• Affine Transformation All the two dimensional transformations where
each of the transformed coordinates x´ and y´ is a linear function of the
original coordinates x & y as





++=′
++=′

222

111

CyBxAy
CyBxAx  where Ai, Bi, Ci are parameters fixed for a given

transformation type.

2D transformation of coordinate systems, translation, rotation, scaling,
reflection, shear-all are examples of 2D affine transformations and exhibit
the general property, that parallel lines transform to parallel lines & finite
points map to finite points. An affine transformation involving only translation,
rotation & reflection preserves the length and angle between two lines.

Check Your Progress

1. What is concatenation of matrices?
2. What is the major property of matrix multiplication?
3. How is an inverse translation matrix and an invert rotation matrix obtained?

5.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The formation of products of transformation matrices is often referred to as
a composition or concatenation of matrices.
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2. The major property of matrix multiplication is associativeness.
3. An inverse translation matrix is obtained by changing the signs of the

translation distances, and an invert rotation matrix is obtained by performing
a matrix transpose (or changing the sign of the sine terms).

5.5 SUMMARY

• An animation may require an object to be translated and rotated at each
increment of the motion along a linear path.

• The matrix representations of the previous section, a set-up for a matrix
can be made for any series of transformations. This set-up is determined by
the product of matrices of the individual transformations.

• The concatenation of transformation matrices for two consecutive scaling
operations produces the composite scaling matrix.

• Translation of the object such that the rotation -point position is shifted to
the coordinate origin.

• By translating the object so that the fixed point coincides with the coordinate
origin.

• we have discussed geometric transformation of 2D objects which are well
defined with respect to a global coordinate system, also called the world
coordinate system(WCS).

• The formation of products of transformation matrices is often referred to as
a composition or concatenation of matrices.

5.6 KEY WORDS

• Shear transformation: it is the transformation that slants the shape of an
object.

• Affine transformation: It is a linear mapping method that preserves points,
straight lines, and planes.

5.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is consecutive scaling?
2. Discuss the concatenation properties for matrix multiplication.
3. Discuss the transformation of coordinate system.
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Long Answer Questions

1. Explain the fixed point scaling.
2. Explain the transformation for scaling.
3. What is affine transformation? Explain.

5.8 FURTHER READINGS

Hearn, Donal and M. Pauline Baker. 1990. Computer Graphics. New Delhi:
Prentice-Hall of India.

Rogers, David F. 1985. Procedural elements for Computer Graphics. New
York: McGraw-Hill.

Foley, D. James, Andries Van Dam, Steven K. Feiner and John F. Hughes. 1997.
Computer Graphics Principles and Practice. Boston: Addison Wesley.

Mukhopadhyay, A. and A. Chattopadhyay. 2007. Introduction to Computer
Graphics and Multimedia. New Delhi: Vikas Publishing House.
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UNIT 6 2D VIEWING

Structure
6.0 Introduction
6.1 Objectives
6.2 The Viewing Pipeline

6.2.1 Viewing Coordinate Reference Frame
6.2.2 Window to Viewport Coordinate Transformation

6.3 2-D Viewing Functions
6.4 Answers to Check Your Progress Questions
6.5 Summary
6.6 Key Words
6.7 Self Assessment Questions and Exercises
6.8 Further Readings

6.0 INTRODUCTION

In this unit‚ you will learn about the viewing pipeline and viewing functions. Viewing
is the process of drawing a view of a model on a 2-dimensional display. They are
used to map from one space to another along the graphics pipeline.

6.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand viewing coordinate reference frame
• Discuss window to viewport coordinate transformation
• Understand 2D viewing functions

6.2 THE VIEWING PIPELINE

The generation of a view of an object on a display device of any computer requires
stage wise transformation operations of the object definitions in different coordinate
systems.

Different views of an object are possible on the view plane either by moving
the object and keeping the eyepoint fixed or by moving the eyepoint and keeping
the object fixed. However, the later technique is used in most of the computer
graphics application to create a new view of the object.

The two-dimensional Device Coordinate System (DCS)  or Screen
Coordinate System (SCS) for display monitor locates points on the display/output
of a particular output device, such as graphics monitor or plotter. These coordinates
are integers in terms of pixels, addressable points, inches, cms, etc.
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2D ViewingThe Normalized Device Coordinates (NDC) are used to map world
coordinates in a device independent two-dimensional pseudospace within the range
0 to 1 for each of x and  y  before final conversion to specific device coordinates.

The modelling and world coordinate positions can be any floating point
values in which normalized coordinates (xnc, ync) satisfy the inequalities:

;10,10 ≤≤≤≤ ncnc yx  and the device coordinates are integers within the range (0,
0) to (xmax, ymax), with (xmax, ymax) depending on the resolution of a particular output
device.

You will frequently see the terms object space and image space. Object
space corresponds to the world coordinate system and image space to the display
screen coordinate system. Object space is an unbounded and infinite collection of
continuous points. Image space is a finite 2-D space. In 2-D, we simply specify a
window in the object space and a viewport in the display surface. Conceptually,
2-D objects in the object space are clipped against the window and are then
transformed to the normalized viewport and finally to the viewport for display
using standard window to viewport mapping.

6.2.1 Viewing Coordinate Reference Frame

Before object descriptions, view plane is projected to transfer the viewing
coordinates (refer Figure 6.1). Conversion of object description from world to
viewing coordinates is equivalent to a transformation which superimposes the
viewing reference frame into the world frame using basic geometric translate and
rotate operations. Following is the transformation sequence:

• Translate the view reference point to the origin of the world coordinate
system.

• Apply rotations to align the x, y and z axes with the world xu, yw and zv
axes, respectively.

If the view reference point is specified at world position (x0, y0 and z0) then this
point is translated to the world origin with the matrix transformation.

T = 

0

0

0

1 0 0 –
0 1 0 –
0 0 1 –
0 0 0 1

x
y
z

The rotation sequence requires up to three coordinate axis rotations depending on
the direction which is chosen for N. In fact, N is not aligned with world coordinate
axis. The viewing and world systems are superimposed with transformation
sequence Rz.Ry.Rx.  That is, we first rotate around the world xw axis to bring zv
into the xwzw plane. Then, the world is rotated around yw axis to align the zw and zv
axes. The final rotation is about zw axis to align the yw and yv axes. The composite
transformation matrix is then applied to world coordinate descriptions to transfer
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them to viewing coordinates. Then given vectors N and V are calculated as a set
of unit vectors to define the viewing coordinate system which is obtained by the
following equations:

The complete world to viewing coordinate transformation matrix is obtained as
the matrix product in the following way:

Mwc.vc  = R.T
This transformation is then applied to coordinate descriptions of objects in which
u is transformed into the world xw axis, v is transformed onto the yw axis and n is
transformed onto zw axis. The complete world to viewing coordinate transformation
matrix is obtained as the matrix product,

Mwc.vc = R.T
This transformation is then applied to coordinate descriptions of objects scene to
transfer them with reference to the viewing reference frame.

Fig. 6.1 Viewing Coordinate Reference Frame

6.2.2 Window to Viewport Coordinate Transformation

Normalization transformation (N) maps world coordinates (or viewing coordinates)
to normalized device coordinates and workstation transformation (W) maps
normalized device coordinates to physical device coordinates. In general, the
mapping of a part of a world coordinate scene to device coordinates is referred as
viewing transformation (V), mathematically expressed as follows:

V = W.N
Sometimes, the two-dimensional viewing transformation is simply called

window to viewport transformation.
By defining a closed boundary or window, the enclosed portion of a world

coordinate scene is clipped against the window boundary and the data of the
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2D Viewingclipped portion is extracted for mapping to a separately defined region known as
viewport. While window selects a part of the scene, viewport displays the selected
part at desired location on the display area. When the window is changed we see
a different part of the scene at the same portion (viewport) on the display. If we
change the viewport only, we see the same part of the scene drawn at different
scale or at different place on the display. By successively increasing or decreasing
the size of the window around a part of the scene, the viewport remaining fixed,
we can get the effect of zoom out or zoom in respectively on the displayed part.

(a) Window in Object Space (b) Window in Device Space

Fig. 6.2 Object Placement in Viewport

Window or viewport can be general polygon shaped or circular. For simplicity
here, we will consider rectangular window and rectangular viewport, with edges
of the rectangles being parallel to the coordinate axes (refer Figure 6.2).

Out of several objects drawn in the object space only those  clipped by the window
are displayed in the viewport in image space. Note that the viewport objects are
larger than the window objects though the object  shapes are not distorted because
the viewport is a uniformly scaled version of the window as shown in the above
screen.



2D Viewing

NOTES

Self-Instructional
114 Material

When the window is changed, different  objects of the scene are displayed in the
same viewport as shown in the above screen.

When only the viewport is moved and the window remains same, we see same
objects displayed through the viewport at a different position as shown in the
above screen. All the screens (a) and (b) above represent screen before effect
and after effect, respectively.

Let us consider a point (xw, yw) within the window enclosure as shown in
Figure 6.2(a). The window is mapped to the viewport such that (xw, yw) transforms
to (xv, yv) in the device space as shown in Figure 6.2(b).

Screen below shows the final text clipping area ‘IPPI’ from the given text
‘CLIPPING’.

The viewport remaining fixed, the window size is gradually reduced
maintaining the scale factors same;  the zooming effect is obtained through the
viewports.

To maintain the same relative placement of the point in the viewport as in the
window,
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In terms of two step geometric transformation the above relation can be
interpreted as,
Step 1:Scaling the window area to the size of the viewport with scale factors sx

and sy with reference to a fixed point (xwmin, ywmin ).
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Step 2:Translating the scaled window to the position of the viewport so that,
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Concatenating  [T1] and [T2] we get,
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Replacing the values of yx ∆∆ and  in the above transformation matrix we finally
get,
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The aspect ratio of a rectangular window or viewport is defined by,
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So, it can be said that if the aspect ratio av of the viewport equals the aspect
ratio aw of the window then sx = sy and no distortion of displayed scene occurs
other than uniform magnification or compression. If wv aa ≠  then the displayed
scene in the viewport gets somewhat distorted with reference to the scene captured
by the window.
Example 6.1: Find the normalization transformation N which uses the rectangle
A (1, 1), B (5, 3), C (4, 5) and D (0, 3) as a window and the normalized device
screen as the viewport.
Solution:

Here we see that the window edges are not parallel to the coordinate axes.
So we will first rotate the window about A so that it is aligned with the axes.

3 1 1Now, tan
5 1 2

1 2sin , cos
5 5

Here we are rotating the rectangle in clockwise direction. So θ is (–)ve, i.e.,
– .
The rotation matrix about A(1, 1) is,

,

2 1 1 3
5 5 5
1 2 1 1

[ ]
5 5 5

0 0 1

R AT
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2D ViewingThe x extent of the rotated window is the length of

52)24(iswhich 22 =+AB .

Similarly, the y extent is the length of 5)21(iswhich 22 =+AD .

For scaling the rotated window to the normalized viewport we calculate sx
and sy as,

5
1
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extentviewport
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As in Equation (6.1), the general form of transformation  matrix representing
mapping of a window to a viewport is,
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In this problem [T] may be termed as N as this is a case of normalization
transformation with,
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Now we compose the rotation and transformation N to find the required viewing
transformation NR,
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6.3 2-D VIEWING FUNCTIONS

Two-dimensional viewing functions include world coordinates to viewing
coordinates in which window to viewport process is used. Window is a region of
the scene selected for viewing which is also called clipping window. Viewport is
a region on display device for mapping to window.

Fig. 6.3 World Coordinates and Viewing Coordinates

Figure 6.3 displays the world coordinates and viewing coordinates area in which
the clipping window selects what we want to see in our virtual 2-D world. The
viewport indicates where it is to be viewed on the output device or within the
display window.

Check Your Progress

1. What are the possible views of an object on the view plane?
2. What is viewport?

6.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Different views of an object are possible on the view plane either by moving
the object and keeping the eyepoint fixed or by moving the eyepoint and
keeping the object fixed.

2. By defining a closed boundary or window, the enclosed portion of a world
coordinate scene is clipped against the window boundary and the data of
the clipped portion is extracted for mapping to a separately defined region
known as viewport.

6.5 SUMMARY

• The two-dimensional Device Coordinate System (DCS) or Screen
Coordinate System (SCS) for display monitor locates points on the display/
output of a particular output device, such as graphics monitor or plotter.
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2D Viewing• The Normalized Device Coordinates (NDC) are used to map world
coordinates in a device independent two-dimensional pseudo space within
the range 0 to 1 for each of x and y before final conversion to specific
device coordinates.

• Normalization transformation (N) maps world coordinates to normalized
device coordinates and workstation transformation (W) maps normalized
device coordinates to physical device coordinates.

• Two-dimensional viewing functions include world coordinates to viewing
coordinates in which window to viewport process is used. Window is a
region of the scene selected for viewing which is also called clipping window.

• The enclosed portion of a world coordinate scene is clipped against the
window boundary and the data of the clipped portion is extracted for mapping
to a separately defined region known as viewport.

6.6 KEY WORDS

• Object Space: An unbounded and infinite collection of continuous points.
• Viewing Pipeline: it is a series of transformations, which are passed by

geometry data to end up as image data being displayed on a device. 
• Viewport: it is a polygon viewing region in computer graphics.

6.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. State the difference between DCS and SCS.
2. What is a coordinate reference frame?
3. What is the transformation sequence for viewing coordinate reference frame?
4. Discuss the mathematical expression for viewing transformation.
5. What is viewing function?

Long Answer Questions

1. Explain the window to viewport coordinate transformation.
2. Explain the aspect ratio of a rectangular viewport.
3. What are 2-D viewing functions? Explain with the help of suitable examples.
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7.0 INTRODUCTION

Clipping refers to the removal of part of a scene. The primary use of clipping in
computer graphics is to identify that portion of a picture, object, line or line segment
that are outside the viewing region. The viewing transformation is insensitive to the
position of points relative to the viewing volume––especially those points behind
the viewer––and it is necessary to remove these points before generating the view.
We will consider point clipping, line clipping, text clipping and polygon clipping.
There are several clipping algorithms. You will learn about Cohen-Sutherland line
clipping algorithm, midpoint subdivision algorithm, Cyrus-Beck algorithm and
Sutherland-Hodgeman polygon clipping operation.

7.1 OBJECTIVES

After going through this unit, you will be able to:
• Define line clipping
• Understand the explicit line clipping and Sutherland-Cohen line clipping

algorithm
• Explain the Sutherland- Hodgeman polygon clipping algorithm

7.2 LINE CLIPPING

The algorithm for clipping is different for different shape of clipping window and
for different type of objects (line, curve, etc.) Here we will discuss some of the
standard clipping algorithms for rectangular clipping window.
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Line Clipping — Visibility Test
Fig. 7.1 shows a 2D scene and a rectangular clipping window. It is defined by left
(L), right (R), top (T) and bottom (B) edges parallel to the edges or axes of the
display surface.

Fig. 7.1 Two Dimensional Clipping Window

Now any point (x, y) is interior to the clipping window provided that

TBRL yyyxxx ≤≤≤≤ and

where xL, xR, yT, yB are the x and y coordinates respectively of the left, right, top
and bottom edges of the window.

The equal sign indicates that points on the window boundary are included
within the window.

To determine visibility of lines w.r.t. the clipping window, we have to deal with
three types of line.

  (i) lines totally visible
 (ii) lines totally invisible
(iii) lines partially visible

Lines are interior to the clipping window and hence totally visible if both end
points are interior to the window e.g., line ab in Fig. 7.1. However lines are not
totally invisible if both end points are exterior to the window e.g., line cd in Fig.
7.1. If both end points of a line are to the right of the window (e.g., line ef) or to
the left (e.g., line gh), or  above (e.g., line ij) or below (e.g., line kl) the window
the line is completely exterior to the window and hence totally invisible. Lines
which fail these two tests are either partially visible (e.g., lines cd and op) or totally
invisible (e.g., line mn).

Explicit Line Clipping Algorithm
This technique uses a 4-digit code to indicate which of the nine regions around a
clipping window contain the end point of a line. The scheme which assigns this 4
bit code to the line end points is summarised as follows :

We consider xL & xR to be the x coordinates of the left and right edges of the
window and yT & yB to be the y coordinates of the top and bottom edges of the



NOTES

Self-Instructional
Material 123

Clipping Algorithmswindow respectively. x,y are the coordinates of any end point of the test line. Here
the rightmost bit is bit 1.

0 else 1  to4bit set then if(iv)
0 else 1  to3bit set then if(iii)
0 else 1  to2bit set then if(ii)
0 else 1  to1bit set then if(i)

T

B

R

L

yy
yy
xx
xx

>
<
>
<

Fig. 7.2 shows the nine region codes w.r.t. a clipping window. You may note
that the codes for the diagonal regions of the window are obtained by adding the
codes for the two adjacent regions.

Fig. 7.2

Now the algorithm is as follows,

Input : xL, xR, yT, yB, P1 (x1, y1), P2 (x2, y2) : P1, P2 are the endpoints of
the test line

Initialise i = 1

while i < = 2

0else1codeof2bitthenif
0else1codeof1bitthenif

=−>
=−<

iRi

iLi

Px x
Px x

: The endpoint codes of the line are

set

1
0else1codeof4bitthenif
0else1codeof3bitthenif

+=
=−>
=−<

ii
Py y
Py y

iTi

iBi

end while

if code – P1 = code – P2 = 0 then (the line is totally visible) draw P1 P2
(ref. line EF in Fig. 7.2).

if code – P1 AND code – P2 < > 0 then (the line is totally invisible2) ignore P1
P2 (ref. line GH in Fig. 7.2).
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If both the end points codes are not equal to zero and their logical intersection
is also not non-zero (i.e. zero) then the line is checked for partial visibility or total
invisibility (ref. line AB and CD in Fig. 7.2). The intersection of the line P1 P2 with
window edges are found.

For a line having end points at (x1, y1) and (x2, y2)
y2 = m (x2 – x1) + y1

where m = 







−
−

12

12

xx
yy

= slope

The intersection with the window edges are given by:

0);(1,:Bottom

0);(1,:Top

;)(,:Right
;)(,:Left

11

11

11

11

≠−





+=′

≠−





+=′

≠+−=′
≠+−=′

myy
m

xxy

myy
m

xxy

myxxmyx
myxxmyx

TBB

TTT

RRR

LLL

α
α

when 0andverticalislinethei.e. 12 =−= xxm α

assign very large numbers to RLRL yyxx ′′ ,,,
when m = 0 i.e. the line is horizontal and y2 – y1 = 0
assign very large numbers to BTBT yyxx ,,, ′′

To get the two intersection points ),(and),( 2211 yxyx ′′′′

Set i = 1

thenandif
then2if

BLTL yyyy
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ifend
ifend
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if i  then
if y   y  and y y  then
x x , y y
i i
end if

end  if
if i  then

if x x  and x x  then
x x , y y
i i
end if

end  if
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ifend
ifend

1
,

thenandif
then2if

+=
=′′=′

>′<′
=<

ii
yyxx

xxxx
i

TiTi

LTRT

For partly visible lines intersecting two window edges in the visible region
(like line AB in Fig. 7.2), any two of these ‘if’s work here and we get two ),( ii yx ′′

for i = 1, 2 which are the end points of the visible portion of the line.

if i < 2 then (none of the intersections are found on the visible window edges)
ignore P1P2 (totally invisible) (ref. line CD in Fig. 7.2).

else draw the line between ),( 11 yx ′′  and ),( 22 yx ′′  where codes of both the end
points are non zero and their logical ANDing is zero.

end if

Now we consider the case where one of the end points of the line lies inside
the window and the other outside it.

If code – P1 = 0 then (P1 is inside the window) P = P1 and Pout = P2.

else if code – P2 = 0 (P2 is inside the window) then P = P2 and Pout = P1
(Fig. 7.3 (a))

end if

Fig. 7.3
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if if ( ) then 
if  and  then ( , ) (Fig. 7.3 (b))

else if then ( , ) (Fig. 7.3 (c))

out L

L T L B i L L

L T i T T

P x x
y y y y P x y

y y P x y

else (i.e. if ) ( , )  (Fig. 7.3(d))

end if
else if ( ). then 
if  and  then ( , ) (Fig. 7.3(e))

else if then ( , ) (Fig. 7.3(f))

L B

R R R

R T

B i B

out R

T B i R

T i T

y y P x y

P x x
y y y y P x y

y y P x y

¢ ¢< =

>
¢ ¢ ¢<= >= =

¢ ¢> =

else (i.e. if ) ( , ) (Fig. 7.3(g))

end if
else if ( ) then ( , ) (Fig. 7.3(h))

else (i.e. if ( ) ) ( , ) (Fig. 7.3(i))

end if

R B

T

B

B i B

out T i T

out B i B

y y P x y

P y y P x y

P y y P x y

¢ ¢< =

¢× > =

¢× < =

Draw visible portion PPi

Example 7.1 Given a window A (20, 20), B (60, 20), C (60, 40), D (20, 40)
use any clipping algorithm to find the visible portion of the line P (30, 50) to Q (70,
30) inside the window.

Fig. 7.4

For the line PQ the slope is

2
1
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20

7030
3050
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

−
−

=







−
−

=
xx
yym

and the intersections with the window edges are

left : x = 20, y = m (xL – x1) + y1

or, y = –1/2 (20 – 30) + 50 = – 1/2 (–10) + 50 = 5 + 50 = 55

which is greater than yT and is rejected

right : x = 60, y = m (xR – x1) + y1

or, y = – 1/2 (60 – 30) + 50 = –15 + 50 = 35 (< yT, >yB)
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top : y = 40, x = xi + 1/m (yT  – y1)

or, x = 30 – 2 (40 – 50) = 30 + 20 = 50 (< xR, >XL)

∴ The intersection with the top edge is at point (50, 40)

bottom : y = 20, x = x1 + 1/m (yB – y1)

   or, x = 30 – 2 (20 – 50)

   = 30 + 60 = 90

which is greater than xR and thus rejected.

So the visible part of the line PQ is from P (50,40) to Q (60,35).

7.2.1 Sutherland–Cohen Algorithm
This is one of the most popular line clipping algorithm. The concept of assigning 4-
bit region codes to the endpoints of a line and subsequent checking and AND
operation of the endpoint codes to determine totally visible lines and totally invisible
lines (lying completely at one side of the clip window externally) was originally
introduced by Dan Cohen and Ivan Sutherland in this algorithm. For clipping other
totally invisible lines and partially visible lines, the algorithm breaks the line segments
into smaller subsegments by finding intersection with appropriate window edges.
For a pair of a non-zero endpoint and an intersection point, the corresponding
subsegment is checked for two primary visibility state as done in the earlier steps.
The process is repeated till two visible intersections are found or no intersection
with any of the four visible window edge is found. Thus this algorithm cleverly
reduces the number of intersection calculation unlike the previous algorithm. The
steps of the algorithm are as follows.

Fig. 7.5

1. Input : xL, xR, yT, yB, P1 (x1, y1), P2 (x2, y2)
Initialise i = 1

while i < = 2
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0 else 1  codeof4bit then if
0 else 1 codeof 3bit then if
0 else 1 codeof 2bit then if

0 else 1  codeof1bit then if

=−>
=−<
=−>
=−<

iTi

iBi

iRi

iLi

Pyy
Pyy
Pxx

Pxx

: The endpoint codes of the line are

i = i + 1

end while

i = 1

2. Initialise j = 1

while j < = 2

left left

right right

bottom bottom

top

if then 1 else 0

if then 1 else 0 et flags according to the position of the

if then 1 else 0 line endpoints w.r.t. window edges

if then 1

j L j j

j R j j

j B j j

j T j

x x C C
x x C C : S
y y C C
y y C top else 0jC

end while

3. if  codes of P1 and P2 are both equal to zero then draw P1 P2 (totally
visible)

4. if logical intersection or AND operation of code – P1 and code – P2 is not
equal to zero then ignore P1 P2 (totally invisible)

5. if code – P1= 0 then swap P1 and P2 along with their flags and set i = 1

6. if code – 01 ><P  then

for i = 1,

{if C1 left = 1 then

find intersection (xL, y´L) with left edge vide eqn. (2)

assign code to (xL, y´L)

;1
ifend

),(1

+=

′=

ii

yxP LL

go to 3

}
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{if C1 right = 1 then

find intersection (xR, y´R) with right edge vide eqn. (3)

assign code to (xR, yŔ )

P1 = (xR, y´R)
end if
i = i + 1
go to 3
}

for i = 3
{if C1 bottom = 1 then
find intersection (x´B, yB) with bottom edge vide eqn. (5)

assign code to (x´B, yB)

P1 = (x´B, yB)
end if
i = i + 1
go to 3
}

for i = 4

{if C1 top = 1 then

find intersection (x´T, yT) vide eqn (4) with top edge

assign code to (x´T, yT)

P1 = (x´T, yT)
end if
i = i + 1
go to 3

}

end

Example 7.2 A Clipping window ABCD is located as follows:

A (100, 10), B (160, 10), C (160, 40), D (100, 40). Using Sutherland-Cohen
clipping algorithm find the visible portion of the line segments EF, GH and P1 P2.
E (50,0), F (70, 80), G (120, 20), H (140, 80), P1 (120, 5),
P2 (180, 30)
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Fig. 7.6

At first considering the line P1 P2

INPUT:  P1 (120, 5), P2 (180, 30)
  xL  = 100, xR = 160, yB = 10,  yT = 40

x1 > xL then  bit 1 of code–P1 = 0 C1 left = 0
x1 < xR then  bit 2 of code–P1 = 0 C1 right = 0
y1 < yB then  bit 3 of code–P1 = 1 C1 bottom = 1
y1 < yT then  bit 4 of code–P1 = 0 C1 top = 0

code–P1 = 0100,

x2 > xL then  bit 1 of code–P2 = 0 C2 left = 0
x2 > xR then  bit 2 of code–P2 = 1 C2 right = 1
y2 > yB then  bit 3 of code–P2 = 0 C2 bottom = 0
y2 < yT then  bit 4 of code–P2 = 0 C2 top = 0

code–P2 = 0010.

code–P1 < > 0 and code–P2 < > 0
then P1P2 not totally visible

code–P1 AND code–P2 = 0
hence the line is not totally invisible

As code–P1 < > 0

for i = 1
{

C1 left (= 0) < >  1 then nothing is done.
i = i + 1 = 2
}
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then  P1P2 not totally visible.

code–P1 AND code–P2 = 0
hence the line is not totally invisible

for i = 2
{

C1 right (=0) < > 1  then nothing is done.

i = i + 1 = 2 + 1 = 3
}
code–P1 < > 0 code–P2 < > 0

then  P1P2 not totally visible

code–P1 AND code–P2 = 0
hence the line is not totally invisible

for i = 3
{

C1 bottom = 1  then find intersection of P1 P2 with bottom edge
yB = 10
xB = (180 –120)(10–5)/( 30 – 5 ) + 120
   = 132

then P1  = (132, 10)

x1 > xL then  bit 1 of code–P1 =0 C1 left = 0
x1 < xR then  bit 2 of code–P1 =0 C1 right = 0
y1 = yB then  bit 3 of code–P1 =0 C1 bottom = 0
y1 < yT then  bit 4 of code–P1 =0 C1 top = 0

code–P1 = 0000
i = i + 1 = 3 + 1 = 4
}

code–P1 = 0 but code–P2 < > 0
then  P1P2 not totally visible

code–P1 AND code–P2 = 0
hence the line is not totally invisible

As code–P1 =0
swap P1 and P2 along with the respective flags
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P1 = (180,30)
P2 = (132,10)
code–P1 = 0010
code–P2 = 0000
C1 left= 0 C2 left = 0
C1 right = 1 C2 right = 0
C1 bottom = 0 C2 bottom = 0
C1 top = 0 C2 top = 0

Reset i = 1
for i = 1

{
C1 left (= 0) < >  1 then nothing is done
i = i + 1 = 1 + 1 = 2

}
code–P1 < > 0, and code–P2 < > 0

then P1P2 not totally visible.

code–P1 AND code–P2 = 0
hence the line is not totally  invisible

for i = 2
{

C1 right  =1  then find intersection of P1 P2 with right edge
xR = 160
yR = (30 – 5 )(160 – 120 )/( 180 –120) + 5
   = 21.6667
   = 22

then P1  = (160, 22)
x1 > xL then  bit 1 of code–P1 = 0 C1 left = 0
x1 = xR then  bit 2 of code–P1 =0 C1 right = 0
y1 > yB then  bit 3 of code–P1 =0 C1 bottom = 0
y1 < yT then  bit 4 of code–P1 = 0 C1 top = 0
code–P1 = 0000,  i = i + 1 = 2 + 1 = 3

}
As both  code–P1 = 0 and code–P2 = 0

then the line segment P1P2 is totally visible
So the visible portion of input line P1P2 is P1´P2´ where P1 = (160,22) & P2
=(132,10).

Considering the line EF
1. The endpoint codes are assigned

1001code
0101code

→−
→−

F
E
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1left =E  (as x coordinate of E is less than xL)

1,0,0 bottomtopright === EEE

Similarly,

0,1,0,1 bottomtoprightleft ==== FFFF

3. Since codes of E and F are both not equal to zero the line is not totally
visible

4. Logical intersection of codes of E and F is not equal to zero. So we may
ignore EF line and declare it as totally invisible

Considering the line GH

1. The endpoint codes are assigned

1000code
0000code

→−
→−

H
G

2. Flags are assigned for the two endpoints

left right top bottom0 0 0 0G , G , G , G

Similarly

left right top bottom0 0 1 0H , H , H , H

3. Since codes of G and H are both not equal to zero so the line is not totally
visible

4. Logical intersection of codes of G and H is equal to zero so we cannot
declare it as totally invisible

5. Since code – G = 0, Swap G and H along with their flags and set i = 1

left right top bottom

left right top bottom

implying 0 0 1 0

0 0 0 0

as 1000 0000

G , G , G , G
H , H , H , H

G , H

6. Since code – G < > 0 then
for i = 1, {since Gleft = 0

i = i + 1 = 2
go to 3
}

The conditions 3 and 4 do not hold and so we cannot declare line GH as
totally visible or invisible
for i = 2, {since Gright = 0

i = i + 1 = 3
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go to 3
}

The conditions 3 and 4 do not hold and so we cannot declare line GH as
totally visible or invisible

for i = 3, {since Gbottom = 0
i = i + 1 = 4

go to 3
}

The conditions 3 and 4 do not hold and so we cannot declare line GH as
totally visible or invisible
for i = 4, {since Gtop = 1
Intersection with top edge, say P(x, y) is found as follows

Any line passing through the points G, H and a point P (x, y) is given by
y – 20 = {(80 – 20) / (140 – 120)} (x – 120)
or, y – 20 = 3x – 360
or, y – 3x = – 340

Since the y coordinate of every point on line CD is 40, so we put y = 40 for
the point of intersection P(x, y) of line GH with edge CD
40 – 3x = – 340
or, – 3x = – 380
or, x = 380/3 = 126.66 ≈  127

So the point of intersection is P (127, 40)
We assign code to it.
Since the point lies on edge of the rectangle so the code assigned to it is 0000.
Now we assign G = (127, 40); i = 4 + 1 = 5.
conditions 3 and 4 are again checked.}
Since codes G and H are both equal to 0, so the line between H (120, 20)

and G (127, 40) is totally visible.

Midpoint Sub-Division Algorithm
Partially visible and totally invisible lines which cannot be identified by checking
and operating (ANDing) endpoint codes are subdivided into two equal
segments by finding the midpoint. Each half is then separately considered and
tested with endpoint codes for immediate identification of totally visible and
totally invisible state. Segments which  cannot be identified even then are further
subdivided at midpoint and each subdivision is subsequently tested. This
bisection and testing procedure is continued until the intersection with a window
edge is found with some specified accuracy. The sequential steps of the
algorithm are given below.
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Fig. 7.7

Input : P1 (x1, y1) P2, (x2, y2), xL, xR, yB , yT

code assign (P1), code assign (P2)

(Assume the function code assign ( ) assigns 4 bit code to a point with respect
to the rectangular clipping window.)

1. if code–P1, code–P2 both = 0, then (the line is totally visible) draw P1P2
2. if code–P1 AND code–P2 < > 0 then (line is totally invisible) ignore P1 P2

3. ;
2

)( 21 PPPm
+

=  code assign (Pm)

4. if code–Pm < > 0
then if code–P1 AND code–Pm <  > 0 then

P1 = Pm; go to 1
else if code–P2 AND code–Pm <  > 0 then
P2 = Pm; go to 1
end if

end if
5. if code–Pm = 0 then

if code–P1, code–Pm both = 0 then consider P2 Pm
else if code–P2, code–Pm both = 0 then consider P1 Pm
end if

end if
6. Considering P1 Pm

do ;
2

)(
{ 1

1
m

m
PPP +

=  code assign (Pm1)

if code–Pm1 <  > 0 then P1 =Pm1 else Pm = Pm1
} while

) and  and  and ( BmTmRmLm yyPyyPxxPxxP ><⋅><⋅><⋅><⋅

P1 = Pm
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7. Considering P2 Pm

do ;
2

)(
{ 2

2
m

m
PPP +

=  code assign (Pm2)

if code–Pm2 < > 0 then P2 = Pm2 else Pm = Pm2
} while

) and  and  and ( TmBmRmLm yyPyyPxxPxxP ><⋅><⋅><⋅><⋅

P2 = Pm
8. Draw P1P2
In the above algorithm a calculated midpoint Pm is considered to be lying on

any of the boundary lines of the window say boundary line x = xL if Pm · x = xL ±
tolerance, where ‘tolerance’ is a very small number (say 0.1) prescribed depending
on the precision of the display.

The midpoint subdivision algorithm, if implemented in hardware works very
fast (even faster than Sutherland-Cohen algorithm) because hardware addition
and division by 2 are very fast.
Example 7.3 Using midpoint subdivision algorithm find the visible portion of
the line P1 P2, P1 (120, 5) P2 (180, 30) w.r.t. a clipping window ABCD where A
(100, 10), B (160, 10), C (160, 40), D (100, 40).

Refer Fig. 7.6
INPUT: P1 (120, 5), P2(180, 30)

xL = 100, xR = 160, yB = 10, yT = 40

x1 > xL then  bit 1 of code–P1 = 0
x1 < xR then  bit 2 of code–P1 = 0
y1 < yB then  bit 3 of code–P1 = 1
y1 < yT then  bit 4 of code–P1 = 0

code–P1 = 0100,

x2 > xL then  bit 1 of code–P1 = 0
x2 > xR then  bit 2 of code–P1 = 1
y2 > yB then  bit 3 of code–P1 = 0
y2 < yT then  bit 4 of code–P1 = 0

code–P2 = 0010.

code–P1 < > 0 and code– P2 < > 0
          then  P1P2 not totally visible.

code–P1 AND code–P2 = 0000
hence (code–P1 AND code–P2 = 0)

then line is not totally  invisible

Pm = (P1 + P2)/2 = ((120+180)/2, (5+30)/2) = (150 , 17.5)
xm > xL then  bit 1 of code–Pm =0
xm < xR then  bit 2 of code–Pm =0
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ym < yTthen  bit 4 of code–Pm =0

P1 code–P1 P2 code–P2 Pm code–Pm Comment

120,5 0100 180,30 0010 150,18 0000 Save P2Pm,
continue with P1Pm
120,5 0100 150,18 0000 135,12 0000 Continue P1Pm
120,5 0100 135,12 0000 128,9 0100 Continue PmP2
128,9 0100 135,11 0000 132,10 0000 Succeeds

code–Pm = 0000, i.e. code–Pm = 0
(Calculating the point by rounding it)
So one of the intersection points has been found at (132,10)

For the second intersection point:

P1 code–P1 P2 code–P2 Pm code–Pm Comment

120,5 0100 180,30 0010 150,18 0000 Continue with PmP2
150,18 0000 180,30 0010 165,24 0010 Continue with P1Pm
150,18 0000 165,24 0010 158,21 0000 Continue with PmP2
158,21 0000 165,24 0010 162,23 0010 Continue with P1Pm
158,21 0000 162,23 0010 160,22 0000 Succeeds

So the second point of intersection has been found at (160, 22)

Hence visible portion of line P1P2 is  P1´P2´ where P1 = (132,10) and P2 = (160, 22).

7.2.2 Clipping Lines against any Convex Polygonal Clipping Window
– Cyrus-Beck Algorithm

Before describing the algorithm we need to be acquainted with some relevant
concepts first.

• What does a Convex Polygon mean?

It is a polygon for which the line joining any two interior points lie completely
inside the polygon.

(a) Convex Polygon                    (b) Non-convex Polygon

Fig 7.8

• How by using normal vector do we know whether a point on a line lies at
the inner side or outer side or on an edge of a convex clipping window?
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Let P1, P2, P3 be position vectors of three points on P1, P2, P3 respectively  a
line that intersects an edge Ei of a convex clipping window R. Let Ni be the
inward normal vector (pointing to the interior of the clipping window) to the
edge Ei:

R

Ei

Pi

2

3

1

P3

P1

Ni

P2
Ni

Ni

Ei

R

Fig. 7.9

Considering Pi as position vector of a point on edge Ei, three different rela-
tion characterizes position of the three points w.r.t Ei and R.

For point P1 which is at the inner side of Ei Ni . (P1 – Pi) < 0
as angle between Ni and

P1 – Pi say θ1 > 90°
For point P2 which is at the outer side of Ei Ni . (P2 – Pi) > 0

as angle between Ni and
P2 – Pi say θ2 < 90°

For point P3 which is on Ei Ni . (P3 – Pi) = 0

as angle between Ni and
P3 – Pi say θ3 = 90°

So it can be inferred that depending on whether Ni . (P – Pi) is (–)ve, (+)ve,
(+)ve or equal to zero the point P lies at the inner side (window side), outer side of
or on the window-edge that intersects the line containing P.

• How to represent any straight line parametrically?

As you have seen in unit 2, using the concept of parallel vectors a line with end
point position vectors P1 and P2 can be expressed parametrically as,

P = P1 + [P2 – P1] t, t being the parameter and 0 < t < 1. Here P, any point
(position vector) on the line, is nothing but a function of t, say, P(t).

P(t = 0) implies P = P1 and P(t = 1) implies P = P2 . t < 0 implies points on
the line before P1 whereas t > 0 implies points on the line beyond P2 i.e., in neither
case, points lie within the segment P1P2.

From the above parametric expression we get,

t = ( )-
-

1

2 1

P P
P P

t  = 1

2 1

P P
P P
-
-

 = 1

2 1

-
-

y y
y y

 = 1

2 1

-
-

x x
x x
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P(t), t < 0
P

t = 0
1

P
t = 1

2

P(t), t > 1

where P = [x  y] P1 = [x1 y1] ; P2 = [x2 y2]

Fig. 7.10

The Basic Scheme of Cyrus-Beck Algorithm
For a point P(t) on the line P1P2 to be the point of intersection with an edge Ei
(having inward normal vector Ni and any point Pi on it) of a convex clipping
window,

Ni . [P(t) – Pi] = 0

⇒ Ni . [P1 + (P2 – P1)t – Pi] = 0

⇒ Ni . [P1 – Pi]  + Ni . [P2 – P1] t = 0

⇒ Ni . [P1 – Pi] + Ni . [P2 – P1] t = 0

⇒ t = – -i 1 i

i

N .[P P ]
N .D

where D = P2 – P1 is the vector from P1 to P2

 ...(1)
Note that Ni . D can be zero if either D = 0 or D is perpendicular to Ni. D =

0 when P1 = P2 implying P1, P2 is a single point P1. In that case P1 is at the outer
side of Ei if Ni . [P1 – Pi] < 0; P1 is at the inner side of Ei if
Ni . [P1 – Pi] > 0 and P1 is on Ei if Ni . [P1 – Pi] = 0. On the other hand D is
perpendicular to Ni if P1P2 is parallel to edge Ei.

So for a line segment P1P2 that is to be clipped against a n-sided convex
clipping window (closed polygon), maximum n number of intersections of the line
with the window edges can be found. That implies we will get n numbers of ‘t’ or
ti (i = 0 to n) from eqn. (1) each corresponding to an intersection. Out of these the
visible pair of intersections are to be identified.

In any line clipping algorithm the ability to quickly identify and separate totally
visible and totally invisible line is important. But for parametric lines no simple,
unique method for distinguishing these two categories of lines is available. Instead
the relative position of ti, s are found w.r.t the clip window by checking the sign of
Ni . D for every ti.

Ni . D > 0 ⇒ cos θ > 0 ⇒ θ < 90° ⇒ Ei is nearer to P1 than P2 ⇒ ti is near
the beginning of line i.e. nearer to P1 than P2 and hence ti can be termed as tE or
potentially entering the clip polygon. The maximum of all such tE’s and 0, say tE
max, is found.
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Ni . D < 0 ⇒ cos θ < 0 ⇒ θ > 90° ⇒ Ei is nearer to P2 than P1 ⇒ ti is near
the end of line i.e. nearer to P2 than P1 and hence ti can be termed as tL or
potentially leaving the clip polygon. The minimum of all such tL s and 1, say tL
min, is found.

The line segment between  P(tE max) and P(tL min) is visible only if tE max ≤ tL
min. [To ensure P(tE max) and P(tL min) lies within P1P2, if any tE > 1 it is discarded
and if any tL < 0 it is discarded.]

Otherwise there is no visible portion of the line P1P2.
The above simple rule properly displays or ignores all classes of lines namely

– Totally invisible, totally visible and partially visible. This is best understood through
following illustrations.
Example 1 Partially Visible Line

E4

E5

E6

E1

E2

E3

P2

P1

P(t )6

N4

N5

N6 N1

N2

N3

P(t )3

N1

θ1

t1

t5 θ5

N5

P1

t6

N6

θ6

E5

E1

 (a) Hexagonal clipping window clips line P1P2. (b) Potentially entering
intersections (tE) near P1 and E6.

θ1, θ5, θ6 < 90°, tE :  t1 < t5 < 0 < t6 ; tE max = t6

 

E4

N3

E2

N4

N2

4

3

E3

P2

t3

t4
t2

2

(c) Potentially leaving intersections (tL) near P2 and E3.q3, q4, q5 >90°,
ti  t2 : t4  > 1 > t3  tL min  = t3  t6 < t3 hence visible portion is from P(t6) to P(t3)

Fig. 7.11
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t2
t1

N1

N3
3

t3
N5

E1

E5
E4

E2 E3

t4

N4
4

Clipping window

1

Fig. 7.12

Example 3 Totally Visible Line

t1 N1
θ1

N2

t2

θ2

N3

P1

P2

θ3

t3

t4

θ4

N4

E1

E2

E3

E4

Chipping
window

Fig. 7.13

Pseudocode of Cyrus-Beck Algorithm
Input: P1, P2 (end points of line to be clipped), n no. vertices Vi, (i = 0 to n) for a
n sided convex clipping window, n no. points Pi on each window edge Ei (Vi s
can be used as Pi s)

Initialize:tE max = 0, tL min = 1

Calculate: inner normals Ni for each edge Ei,
D = P2 – P1

if (P1 = P2) then clip point P1

else
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for (each edge Ei)

 if Ni . D = 0 then ignore Ei as it is parallel to the line
 else

{ t = – [ ]-i 1 i

i

N . P P
N .D

if Ni . D > 0 then
if t > tE max then tE max = t

else if Ni . D < 0 then
if t > tL min then tL min = t

end if
if tE max ≤ tL min then draw line between P(tE max) and P(tL

min)
else no display
endif

}
 endif

endfor
endif

7.3 POLYGON CLIPPING

7.3.1 Sutherland–Hodgman Algorithm
So far you have learnt techniques to clip any line by a clipping window. Using any
of these techniques we can attempt to clip a polygon because a polygon is simply
a set of connected straight lines (edges). But the problem is, each edge clipped
separately using a line clipping algorithm will certainly not produce a truncated
polygon as one would expect. Rather it would produce a set of unconnected line
segments as if the polygon is exploded. Herein lies the need to use a different
clipping algorithm to output truncated yet bounded region(s) from input polygon.
Sutherland - Hodgman algorithm is one such standard method for clipping
arbitrary shaped polygons with a rectangular clipping window.

Fig. 7.14
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each edge of the clip rectangle; new edges must be added, and existing edges
must be discarded, retained, or divided. Even multiple polygons may result from
clipping a single polygon. This is unlike the case of Sutherland-Cohen line clipping
which tests the line-endpoint outcode to see which clip-edge is crossed and clips
only when necessary.

Sutherland–Hodgman clipper actually follows a divide & conquer strategy. It
decomposes the problem of polygon-clipping against a clip window into identical
subproblems. A subproblem is to clip all polygon edges (pair of vertices) in
succession against a single infinite clip edge. The output is a set of clipped edges or
pair of vertices that fall in the visible side w.r.t that clip edge. These set of clipped
edges or output vertices are considered as input to the next subproblem of clipping
against the second window edge. Thus considering the output of the previous
subproblem as the input, each of the subproblems are solved sequentially, finally
yielding the vertices that fall on or within the window boundary. These vertices
connected in order forms the shape of the clipped polygon that may be optionally
scan -filled.

While clipping polygon edges against a window edge we move from one vertex
(Vi) to the next vertex (Vi+1) and decide the output vertex according to the four
simple rules stated below.

Fig. 7.15

Vi  → Vi +1 Output vertex
Rule 1: inside (window) inside Vi +1
Rule 2: inside outside Vi  ́, the intersection with the

window edge
Rule 3: outside outside none
Rule 4: outside inside Vi´, Vi +1

For edge Vi → Vi +1, the starting vertex Vi is assumed to have already been
considered as a candidate for output while it was the terminating vertex of the
edge Vi -1 → Vi.

The intersection point Vi´ is easily found as the x or y coordinates of Vi, Vi+1
and the concerned window edge are already known. By assigning a 4 bit outcode
to every vertex we can determine whether the point falls on the visible side (when
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(a)

(b)

code = 0) of the window edge or on the other side (when code ≠ 0).
Now let us see in steps what exactly happens while clipping our initial arrow

shaped quadrilateral against a rectangular clip window following the above rules.
Note the vertex list at each step.

STEP 1 – Clip against Left
edge
Input vertex list [V1, V2, V3,
V4]
Edge V1 → V2 : output V1´
Edge V2 → V3 : output V2´, V3
Edge V3 → V4 : output V4
Edge V4 → V1 : output V1
Output vertex list [V1´, V2´, V3,
V4, V1]

STEP 2 – Clip against
Bottom edge
Input vertex list  [V1´, V2´, V3,
V4 , V1]
Edge V1´ → V2´ : output V2´
Edge V2´ → V3 : output V2´´
Edge V3 → V4 : output V3´, V4
Edge V4 → V1 : output V1
Edge V1 → V1´ : output V1´
Output vertex list [V2´, V2´´, V3 ,́
V4, V1, V1´]

STEP 3 – Clip against Right
edge
Input vertex list [V2´, V2´´, V3´,
V4, V1, V1´]
Edge V2´ → V2´´ : output V2´´
Edge V2´´ → V3´ : output V2´´´
Edge V3´ → V4 : output V3´´, V4

Edge V4 → V1 : output V4´
Edge V1 → V1´ : output V1´´, V1´
Edge V1´ → V2´ : output V2´

Output vertex list [V2´´, V2´´´, V3´´,
V4 ,V4´, V1´´ , V1´, V2´]

(c)
Fig. 7.16
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Clipping AlgorithmsSTEP 4 – Clip against Top edge

Input vertex list [V2´´, V2´´´, V3´´,
V4, V4´, V1´´, V1´, V2´]

Edge V2´´ → V2´´´: output V2´´´

Edge V2´´´ → V3´´ : output V3´´

Edge V3´´ → V4   : output V4

Edge V4 → V4´  : output V4´

Edge V4´ → V1´´ : output V4´´

Edge V1´´ → V1´  : output V1´´´, V1´

Edge V1´ → V2´  : output V2´

Edge V2´ → V2´´ : output V2´´

Output vertex list [V2´´´, V3´´, V4 , V4´, V4´´,
V1´´´, V1´, V2´ V2´´]

The final clipped polygon,

Output vertex list [V2´´´, V3´´, V4 , V4´, V4´´,
V1´´´, V1´, V2´, V2´´]

We started off with 4 vertices and ended up
with 9 new vertices except V4, which survived
the 4-step revision of vertices.

Because clipping against one clip-edge is independent of all others, it is
possible to arrange the clipping stages in a pipeline. The input polygon is clipped
against one edge and any points that are kept are passed on as input to the next
stage of the pipeline. This way four polygons can be at different stages of the
clipping process simultaneously for a rectangular clipping window. This is often
implemented in hardware. The same algorithm, slightly modified, is found more
suitable for hardware implementation. The modified approach recursively clips
a single polygon edge (vertex) against all the window edges. The portion of the
edge (if any) finally lying within the window boundary is saved. The process is
repeated for the other polygon edges one after another.  Thus this method
generates the final clipped polygon without creating & storing any intermediate
polygon definitions. If there are n polygon edges this method executes n cycles
of window-edge (4 per cycle) processing whereas the previous approach looped
through 4 cycles of polygon-edge (≥ n per cycle) processing.

Though the above discussion assumes only rectangular clip window, the
Sutherland –Hodgman algorithm will clip any polygon, convex or concave, against
any convex polygonal clipping window. So the usual code-testing method for

(d)

(e)

Fig. 7.17
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determining the visibility of a polygon vertex w.r.t an arbitrary clip edge will not be
applicable. We may use the following simple rule to determine whether a point is
inside, on or outside the clip-edge.  Remember if the successive edges of the
clipping polygon are considered anticlockwise the inside of the polygon is always
to the left; if considered clockwise it is to the right.

Fig. 7.18

If the position of any polygon vertex Vi is to be determined w.r.t a clipping
edge PiPi+1 in general, then the sign of the cross product of the vectors PiVi and
PiPi+1 is tested.

If sign of PiVi ⊗ PiPi+1 is +ve, then Vi is to the right of line PiPi+1

If sign of PiVi ⊗ PiPi+1 is –ve, then Vi is to the left of line PiPi+1

If PiVi ⊗ PiPi+1 = 0, then Vi is on the line PiPi+1

From the basic right hand rule of cross product of vectors, the above
interpretation is easily understandable.

Pseudocode for Sutherland–Hodgman Algorithm
Define variables
inVertexArray is the array of input polygon vertices
outVertexArray is the array of output polygon vertices
Nin is the number of entries in inVertexArray
Nout is the number of entries in outVertexArray
n is the number of edges of the clip polygon
ClipEdge [x] is the xth edge of clip polygon defined by a pair of vertices
s, p are the start and end point respectively of current polygon edge
i is the intersection point with a clip boundary
j is the vertex loop counter

Define Functions
AddNewVertex (newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then
updates Nout
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: Checks whether the vertex lies inside the clip edge
or not; returns TRUE if inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clips polygon edge (first, second) against
clipEdge[x], outputs the intersection point

{ : begin main
x = 1
while (x ≤ n) : Loop through all the n clip edges
{
Nout = 0 : Flush the outVertexArray
s = inVertexArray[Nin] : Start with the last vertex in inVertexArray
for j = 1 to Nin do : Loop through Nin number of polygon vertices

(edges)
     {
        p = inVertexArray[j]
        if InsideTest (p, clipEdge[x]) = = TRUE then : Cases 1 and 4
          if InsideTest(s, clipEdge[x]) = = TRUE then
            AddNewVertex (p, Nout, outVertexArray) : Case 1
            else
              i = Intersect(s, p, clipEdge[x]) : Case 4
              AddNewVertex (i, Nout, outVertexArray)
              AddNewVertex (p, Nout, outVertexArray)
        end if
        else                                              :i.e. if InsideTest (p, clipEdge[x]) = =

FALSE
                                                             (Cases 2 and 3)
          if InsideTest(s, clipEdge[x]) = = TRUE then : Case 2
            {
              Intersect(s, p, clipEdge[x])
              AddNewVertex (i, Nout, outVertexArray)
       end if : No action for case 3
        s = p : Advance to next pair of vertices
        j = j + 1
     end if : end {for}
     }
x = x + 1 : Proceed to the next ClipEdge[x + 1]
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Nin = Nout
inVertexArray = outVertexArray : The ouput vertex array for the current

clip edge becomes the input vertex
array for the next clip edge

} : end while
} : end main

Check Your Progress

1. What is the purpose of line clipping?
2. What are the three types of line to determine the visibility of lines?

7.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The purpose of clipping procedure is to determine which part of a scene or
specifically which points, lines (or curves) or portions of the lines (or curves)
of a scene lie inside the clipping window.

2. To determine visibility of lines w.r.t. the clipping window, we have to deal
with three types of line.
(i) Lines totally visible (ii) Lines totally invisible (iii) Lines partially visible

7.5 SUMMARY

• Line clipping procedure is to determine which part of a scene or specifically
which points, lines (or curves) or portions of the lines (or curves) of a scene
lie inside the clipping window.

• Explicit Line Clipping technique uses a 4-digit code to indicate which of the
nine regions around a clipping window contain the end point of a line.

• Sutherland–Cohen is one of the most popular line clipping algorithm. The
concept of assigning 4- bit region codes to the endpoints of a line and
subsequent checking and AND operation of the endpoint codes to determine
totally visible lines and totally invisible lines.

• Partially visible and totally invisible lines which cannot be identified by
checking and operating (ANDing) endpoint codes are subdivided into two
equal segments by finding the midpoint.

• Convex polygon for which the line joining any two interior points lie completely
inside the polygon.

• Sutherland–Hodgman is learnt techniques to clip any line by a clipping
window. Using any of these techniques we can attempt to clip a polygon
because a polygon is simply a set of connected straight lines.



NOTES

Self-Instructional
Material 149

Clipping Algorithms
7.6 KEY WORDS

• Convex Polygon: It is a polygon for which the line joining any two interior
points lie completely inside the polygon.

• Clipping: It is a method to selectively enable or disable rendering
operations within a defined region of interest.

• Line Clipping: The process of removing lines or portions of lines outside
of an area of interest.

7.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a note on line clipping.
2. Write the Sutherland-Cohen algorithm.
3. Write the pseudocode for Sutherland-Hodgeman.

Long Answer Questions

1. Explain the explicit line clipping algorithm.
2. Explain the midpoint sub-division algorithm.
3. Write the pseudocode for Cyrus-Beck algorithm.
4. Describe polygon clipping alongwith Sutherland-Hodgman algorithm.
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BLOCK - III
3D OBJECT REPRESENTATION

UNIT 8 INTRODUCTION TO
SURFACES

Structure
8.0 Introduction
8.1 Objectives
8.2 Polygon Surfaces
8.3 Quadric Surfaces
8.4 Spline Representations
8.5 Answers to Check Your Progress Questions
8.6 Summary
8.7 Key Words
8.8 Self Assessment Questions and Exercises
8.9 Further Readings

8.0 INTRODUCTION

In this unit‚ you will learn about the polygon surfaces‚ quadric surfaces and spline
representations. Spline is a curve that connects two or more specific points, or
that is defined by two or more points.

8.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand and define polygon surfaces and quadric surfaces
• Define spline
• Discuss spline specification

8.2 POLYGON SURFACES

The most commonly used boundary presentation for three-dimensional graphics
objects, is a set of surface polygons which enclose an object interior. There are
several graphics systems that can store object descriptions as sets of surface
polygons. All surfaces can be described with linear equations that simplify the
surface rendering (interpretation) and display of objects. For this reason, polygon
descriptions are often referred to as standard computer graphics objects. In other
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Introduction to Surfaceswords, a polygonal representation is the only available description. Many packages
allow objects to be described with other schemes as well (such as spline surfaces),
that are then converted to polygonal representations for processing. A polygon
representation for a polyhedron in particular defines the surface features of an
object. But for other objects, surfaces are tessellated (i.e., tiled) to produce the
polygon-mesh approximation. The surface of a cylinder is represented as a polygon
mesh in figure 8.1. Since the wire-frame outline can be displayed quickly to give a
general indication of the surface structure, such representations are common in
graphics design and solid-modelling applications. To eliminate or reduce the
presence of polygon edge boundaries, realistic renderings are produced by
interpolating shading patterns across the polygon surfaces. The polygon-mesh
approximation to a curved surface can be enhanced by dividing the surface into
smaller polygon facets.

 

Fig. 8.1 Wire-Frame Representation of a Cylinder with Back (Hidden) Lines removed

8.3 QUADRIC SURFACES

Quadric surfaces are the most commonly used class of objects and are described
using second-degree equations (called quadratics). They include spheres, ellipsoids,
paraboloids, hyperboloids, etc. Quadric surfaces (particularly spheres and
ellipsoids), are common elements of graphics scenes and they are often used in
graphics packages as primitives components by which more complex objects can
be constructed.

                                                               Y 

                 P (x, y, z) 

    r 

            ϕ            X 

     θ 
 Z 

Fig. 8.2 Parametric Coordinate Position (r, , j) on the Surface of a Sphere with Radius r
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Fig. 8.3 Spherical Coordinate Parameters (r, θ,  ϕ) using Colatitude for angle ϕ

Sphere

A spherical surface with radius r centered on the coordinate origin is defined as a
set of points (x, y, z) in Cartesian coordinates that satisfies the equation

2 2 2 2x y z r+ + =
...(8.1)

We can also describe a spherical surface in the parametric form, using latitude and
longitude angles as shown in Figure 8.2:

cos cos , where, / 2 / 2x r ϕ θ π ϕ π= − ≤ ≤
...(8.2)

cos sin , where,y r ϕ θ π θ π= − ≤ ≤

sinz r ϕ=

The parametric representation in equation 8.2 provides a symmetric range for the
angular parameters θ and ϕ. Alternatively, we can write the parametric equation
using standard spherical coordinates, where angle ϕ is specified as the co-latitude
(Figure 8.3). Then, ϕ is defined over the range 0 ≤ ϕ ≤ π, and θ is often taken in
the range 0 ≤ θ ≤ 2π. A set up can also be represented by using parameters u and
v, defined over the range from 0 to 1 by substituting ϕ = πu and θ = 2πv.

Ellipsoid

The surface of an ellipsoid can be described as an extension of a spherical surface,
where the radii in three mutually perpendicular directions can have different values
as shown in Figure 8.4. The Cartesian representation of points over the surface of
an ellipsoid centered on the origin is expressed as follows:

22 2

1
x y z

x y z
r r r

    
+ + =          

...(8.3)
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Fig. 8.4 An Ellipsoid with Radii rx, ry and rz whose Centre is (0, 0, 0)

And a parametric representation for the ellipsoid in terms of the latitude angle ϕ in
Figure 8.4 and the longitude angle θ in Figure 8.2 is as follows:

cos cos , where, / 2 / 2xx r ϕ θ π ϕ π= − ≤ ≤ ...(8.4)

cos sin , where,yy r ϕ θ π ϕ π= − ≤ ≤

sinzz r ϕ=

Torus

A torus can be defined as a doughnut-shaped object, as shown in Figure 8.5. It
can be generated by rotating a circle or some other conic about a specified axis.
We can
write the Cartesian representation for points over the surface of a torus in the
following form:

2
22 2

1
x y z

x y zr
r r r

      − + + =             
...(8.5)

where r is any given offset value. Parametric representations for a torus are similar
to those for an ellipse, except that angle ϕ extends over 360°. Using latitude and
longitude angles ϕ and θ, we can describe the torus surface as the set of points
that satisfy the following:

( cos ) cos , where,xx r r ϕ θ π ϕ π= + − ≤ ≤
...(8.6)

( cos ) sin , where,yy r r ϕ θ π θ π= + − ≤ ≤

sinzz r ϕ=
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Fig. 8.5 A Torus with a Circular Cross Section Centered on the Coordinate Origin

Super Quadrics

Super quadrics is a class of objects that is generalized with the help of quadratic
representations. Super quadrics can be formed by incorporating additional
parameters into quadratic equations to provide additional flexibility for adjusting
object shapes. The dimension of the object is equal to the number of additional
parameters used: two parameters for surfaces and one parameter for curves.

8.4 SPLINE REPRESENTATIONS

In drafting terminology, a spline is a flexible strip that is used to produce a smooth
curve by using a designated set of points. To hold the spline in position on the
drafting table (so as to draw a curve) several small weights are distributed along
the length of the strip. The term spline curve originally referred to a curve drawn
thus. Mathematically, such a curve can be described with a piecewise cubic
polynomial function in which the first and second derivatives are continuous across
the various sections of the curve. In graphics terminology, the term spline curve
refers to any composite curve formed with polynomial sections which satisfy
specified continuity conditions at the boundary of the pieces. A spline surface can
be described with two sets of orthogonal spline curves. There are several different
kinds of spline specifications that are used in graphics applications. Each individual
specification simply refers to a particular type of polynomial with certain specified
boundary conditions. Splines are used in graphic applications to design curve and
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Introduction to Surfacessurface shapes, to digitize drawings for computer storage, and to specify animation
paths for objects in a scene. Typical CAD applications for splines include the
design of automobile bodies, aircraft and spacecraft surfaces and ship hulls.

Fig. 8.6 A Set of Six Control Point Interpolated with Piecewise
Continuous Polynomial Sections

Fig. 8.7 A Set of Five Control Points Approximated with Piecewise Continuous
Polynomial Sections

Interpolation and Approximation Spline

A spline curve can be specified by giving a set of coordinate positions, also called
control points, which indicates the general shape of the curve. These control points
are then fitted with piece wise continuously parametric polynomial functions in one
of two ways. When polynomial sections are fitted so that the curve passes through
each control point, as in Figure 8.6, the resulting curve is assumed to interpolate
the set of control points. On the other hand, when the polynomials are set to the
general control-point path without necessarily passing through any control point,
the resulting curve is said to approximate the set of control points shown in Figure
8.7. Interpolation curves are commonly used to digitize images or to specify the
path of an animation.

Approximation curves are primarily used as design tools to arrange object
surfaces. A spline curve can be defined, modified, and manipulated by performing
operations on the control points. By interactively selecting spatial positions for the
control points, a graphics user can set up an initial curve. After the polynomial fit is
displayed for a given set of control points, the designer can then reposition some
or all of the control points to restructure the shape of the curve. In addition, the
curve can be translated, rotated, or scaled with transformations applied to the
control points. Computer-aided Design (CAD) packages can also insert extra
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control points to aid a designer in adjusting the curve shapes. The convex polygon
boundary that encloses a set of control points is called the convex hull.

One way to envision the shape of a convex hull is to imagine a rubber band
stretched around the positions of the control points so that each control point is
either on the perimeter of the hull or inside it as shown in Figure 8.8. A measure for
the deviation of a curve or surface from the region bounding the control points is
provided by convex hulls. Some splines are bounded by the convex hull, thus
ensuring that the polynomials smoothly follow the control points without erratic
oscillations. Also, the polygon region inside the convex hull is useful in some
algorithms as a clipping region.

A poly line connecting the sequence of control points for an approximation
spline is usually displayed to remind a designer of the control-point ordering. This
set of connected line segments is often referred to as the control graph of the
curve. Other names for the series of straight-line sections connecting the control
points in the order specified are control polygon and characteristic polygon. Figure
8.9 shows the shape of the control graph for the control-point sequences given in
the Figure 8.8.

                 P2

       P2  

     P3       P0 

 P0 

               P1              P1 
   (a)                     (b) 

Fig. 8.8 Convex-Hull Shapes (Dashed Lines) for Two Sets of Control Points
 

    P2 
 

          P2 
 

 P0                P3  
 

      P0 

        P2  

          
  P1  

Fig. 8.9 Control-Graph Shapes (Dashed Lines) for Two different Sets of Control Points
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(a)   (b)     (c)  
 

Fig. 8.10 Piecewise Construction of a Curve by Joining Two Curve Segments using
different Orders of Continuity:  (a) Zero-order Continuity Only (b) First-order

Continuity (c) Second-order Continuity.

Parametric Continuity Conditions

To ensure a smooth transition from one section of a piecewise parametric curve to
the next, we can impose various continuity conditions at the connection points. If
each section of a spline is described with a set of parametric coordinate functions
of the following form:

1 2( ), ( ), ( ),x x u y y u z z u u u u= = = ≤ ≤ ...(8.7)

we set parametric continuity by matching the parametric derivatives of adjoining
curve sections at their common boundary. Zero-order parametric continuity,
described as C1 continuity, means simply, that the curves meet. That is, the values
of x, y and z evaluated at u, for the first curve section are equal, respectively, to
the values of x, y and z evaluated at u, for the next curve section. First-order
parametric continuity, referred to as C1 continuity, means that the first parametric
derivatives (tangent lines) of the coordinate functions in equation 8.7 for two
successive curve sections are equal at their joining point. Second-order parametric
continuity, or C2 continuity, means that both the first and second parametric
derivatives of the two curve sections are the same at the intersection. Higher-
order parametric continuity conditions are defined similarly. Figure 8.10 shows
examples of C0, C1, and C2 continuity. In second-order continuity, the rates of
change of the tangent vectors for connecting sections are equal at their intersection.
Thus, the tangent line transitions smoothly from one section of the curve to the
next. See Figure 8.10(c). But in first-order continuity, the rates of change of the
tangent vectors for the two sections can be quite different, so that the general
shapes of the two adjacent sections can change abruptly. (See Figure 8.10(b)).
First-order continuity is often sufficient to digitize drawings and some design
applications, while second-order continuity is useful to set-up animation paths for
camera motion and for many precision Computer Aided Design requirements. A
camera travelling along the curve path given in Figure 8.10(b), with equal steps in
parameter u, would experience an abrupt change in acceleration at the boundary
of the two sections, producing a discontinuity in the motion sequence. But if the
camera were travelling along the path in Figure 8.10(c), the frame sequence for
the motion would smoothly transition across the boundary.
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Geometric Continuity Conditions

An alternate method for joining two successive curve sections is to specify
conditions for geometric continuity. In this case, we only require parametric
derivatives of the two sections to be proportional to each other at their common
boundary instead of equal to each other. Zero-order geometric continuity, described
as G0 continuity is the same as zero-order parametric continuity. That is, the two
curves sections must have the same coordinate position at the boundary point.
First-order geometric continuity, or G1 continuity, means that the parametric first
derivatives are proportional at the intersection of two successive sections. If we
denote the parametric position on the curve as P(u), the direction of the tangent
vector P′(u), but not necessarily its magnitude, will be the same for two successive
curve sections at their joining point under G1 continuity. Second-order geometric
continuity, or G2 continuity, means that both the first and second parametric
derivatives of the two curve sections are proportional at their boundary. Under
GL continuity, curvatures of two curve sections will match at the joining position.
A curve generated with geometric continuity conditions is similar to the one
generated with parametric continuity, but with slight differences in the shape of the
curve.

Spline Specifications

There are three equivalent methods for specifying a particular spline representation.
These are as follows:

(i) We can state the set of boundary conditions that are imposed on the spline.
(ii) We can state the matrix that characterizes the spline.
(iii) We can state the set of blending functions (or basis functions) that determine

how specified geometric constraints on the curve are combined to calculate
positions along the curve path.

To illustrate these three equivalent specifications, suppose we have the following
parametric cubic polynomial representation for the x coordinate along the path of
a spline section:

Boundary conditions for this curve might be set, for example, on the endpoint
coordinates x(0) and x(l) and on the parametric first derivatives at the endpoints
x′(0) and x′(1). These four boundary conditions are sufficient to determine the
values of the four coefficients ax, bx, cx, and dx. From the boundary conditions, we
can obtain the matrix that characterizes this spline curve by first rewriting equation
8.7 as the matrix product

3 2 1( )

x

x

x

x

a
b

x u u u u
c
d

 
 
  =    
 
  

...(8.8)
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where U is the row matrix of powers of parameter u, and C is the coefficient
column matrix. Using the equation 8.8, we can write the boundary conditions in the
matrix form and solve for the coefficient matrix C as,

.spline geomC M M=

...(8.9)
where Mgoem is a four-element column matrix containing the geometric constraint
values (boundary conditions) on the spline; and Mspline is the 4 × 4 matrix that
transforms the geometric constraint values to the polynomial coefficients and
provides a characterization for the spline curve. Matrix Mgeom contains control
point coordinate values and other geometric constraints that have been specified.
Thus, we can substitute the matrix representation for C into equation 8.8 to obtain,

( ) . .spline geomx u U M M=

...(8.10)
The matrix, Mspline characterizing a spline representation, sometimes called the
basis matrix, is particularly useful for transforming from one spline representation
to another. Finally, we can expand equation 8.10 to obtain a polynomial
representation for x coordinate in terms of the geometric constraint parameters,

3

0
( ) . ( )k k

k
x u g BF u

=

= ∑
...(8.11)

where gk are the constraint parameters, such as the control-point coordinates and
slope of the curve at the control points, and BFk(u) are the polynomial blending
functions. In the following sections, we discuss some commonly used splines and
their matrix and blending-function specifications.

Check Your Progress

1. What is torus?
2. What are super quadrics?

8.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A torus can be defined as a doughnut-shaped object.
2. Superquadrics is a class of objects that is generalized with the help of

quadratic representations. Super quadrics can be formed by incorporating
additional parameters into quadratic equations to provide additional flexibility
for adjusting object shapes.
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8.6 SUMMARY

• The most commonly used boundary presentation for three-dimensional
graphics objects, is a set of surface polygons which enclose an object interior.
There are several graphics systems that can store object descriptions as
sets of surface polygons.

• Quadric surfaces are the most commonly used class of objects and are
described using second-degree equations (called quadratics). They include
spheres, ellipsoids, paraboloids, hyperboloids, etc.

• The surface of an ellipsoid can be described as an extension of a spherical
surface, where the radii in three mutually perpendicular directions can have
different values.

• A torus can be defined as a doughnut-shaped object. It can be generated
by rotating a circle or some other conic about a specified axis.

• Super quadrics is a class of objects that is generalized with the help of
quadratic representations. Super quadrics can be formed by incorporating
additional parameters into quadratic equations to provide additional flexibility
for adjusting object shapes.

• A spline is a flexible strip that is used to produce a smooth curve by using a
designated set of points. To hold the spline in position on the drafting table
several small weights are distributed along the length of the strip.

8.7 KEY WORDS

• Torus:  A torus can be defined as a doughnut-shaped object, it can be
generated by rotating a circle or some other conic about a specified axis.

• Super Quadrics: Super quadrics is a class of objects that is generalized
with the help of quadratic representations.

• Spline: It is a curve that connects two or more specific points, or that is
defined by two or more points.

8.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a note on polygon surfaces.
2. What are quadric surfaces?
3. Write the Cartesian representation for points over the surface of a torus.
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1. Explain the parametric continuity conditions.
2. What are spline specifications? Explain.
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UNIT 9 CURVE AND SURFACES

Structure
9.0 Introduction
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9.3 Bezier Curves and Surfaces
9.4 B-Spline Curve and Surfaces
9.5 Basic Illumination Models
9.6 Polygon Rendering Methods

9.6.1 Phong Shading
9.6.2 Fast Phong Shading

9.7 Answers to Check Your Progress Questions
9.8 Summary
9.9 Key Words

9.10 Self Assessment Questions and Exercises
9.11 Further Readings

9.0 INTRODUCTION

In this unit‚ you will learn about the Hermite curve‚ Bezier curve and surfaces.
Bezier curves are used in computer graphics to produce curves which appear
reasonably smooth at all scales. Bezier surfaces are a species of mathematical
spline used in computer graphics, computer-aided design, and finite element
modelling. You will also learn about the illumination models and polygon rendering
methods. An illumination model may also be called a shading model or a lighting
model. It calculates the intensity of light that one can see at a given point on the
surface of an object. Surface rendering algorithms use intensity calculations from
an illumination model to determine the light intensity for all projected pixel positions
for various surfaces in an object.

9.1 OBJECTIVES

After going through this unit, you will be able to:
• Describe about Hermite curve
• Discuss about Bezier curve and surfaces
• Define B- Spline curve and surfaces
• Understand basic Illumination models
• Explain polygon rendering methods
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9.2 HERMITE CURVE

Hermite spline is a spline curve where each polynomial of the spline is
in Hermite form. A cubic Hermite spline or cubic Hermite interpolator is
a spline where each piece is a third-degree polynomial specified in Hermite form
i.e., by its values and first derivatives at the end points of the
corresponding domain interval. These are typically used for interpolation of numeric
data specified at given argument values x1, x2, x3……..xn to obtain a smooth continuous
function. The data should consist of the desired function value and derivative at
each xk.. The Hermite formula is applied to each interval (xk, xk+1) separately. The
resulting spline will be continuous and will have continuous first derivative.

Cubic polynomial splines can be specified in other ways, the Bezier
form being the most common. These two methods provide the same set of splines,
and data can be easily converted between the Bezier and Hermite forms so that
the names are often used as if they were synonymous.

9.3 BEZIER CURVES AND SURFACES

Bezier curve is the spline approximation method that was developed by the French
engineer Pierre Bezier to design automobile bodies. The Bezier spline has a number
of properties that makes it highly useful and convenient for surface and curve
design. Bezier curves and surfaces are easy to implement. For these reasons,
Bezier splines are widely available in various graphics packages like CAD systems,
and in assorted drawing and painting softwares.

Practically, a section of a Bezier curve can be fitted to any number of control
points. The number of control points to be approximated and their relative position
determines the degree of the Bezier polynomial. Similar to the interpolation splines,
a Bezier curve can be specified with boundary conditions, with blending functions,
or with a characterizing matrix. In case of general Bezier curves, the blending-
function specification is the most convenient function. Suppose we are given n + 1
control-point positions: pk = (xk, yk, zk), with k varying from 0 to n. These coordinate
points can be blended to produce the following position vector P(u), which
describes the path of an approximating Bezier polynomial function between P0
and Pn:

,
0

( ) . ( ), 0 1
n

k k n
k

P u P BEZ u u
=

= ≤ ≤∑ ...(9.1)
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The Bezier blending functions BEZk, n(u) are the Bernstein polynomials that are
defined as follows:

, ( ) ( , ) (1 )k n k
k nBEZ u C n k u u −= − ...(9.2)

where the C(n, k) are the binomial coefficients defined as follows:

!( . )
!( )!

nC n k
k n k

=
− ...(9.3)

Equivalently, we can define Bezier blending functions with the recursive calculation
as follows:

, , 1 1, 1( ) (1 ) ( ) ( ), 1k n k n k nBEZ u u BEZ u uBEZ u n k− − −= − + > ≥ ...(9.4)

with BEZk, k = uk, and BEZ0, k = (1 – u)k. The vector equation 9.1 represents a set
of three parametric equations for the individual curve coordinate as follows:

,
0

( ) ( )
n

k k n
k

x u x BEZ u
=

= ∑
...(9.5)

,
0

( ) ( )
n

k k n
k

y u y BEZ u
=

= ∑

,
0

( ) ( )
n

k k n
k

z u z BEZ u
=

= ∑

As a rule, a Bezier curve is a polynomial of degree one less than the number of
control points used: three points generate a parabola, four points a cubic curve,
and so forth. Figure 9.1 demonstrates the appearance of Bezier curves for various
selections of control points in the xy-plane (z = 0). With certain control-point
placements, however, we obtain degenerate Bezier polynomials. For example, a
Bezier curve generated with three collinear control points is a straight-line segment.
And a set of control points that are all at the same coordinate position produces a
Bezier ‘curve’ that is a single point. Bezier curves are commonly applied in painting
and drawing packages, as well as CAD systems, since they are easy to implement
and they are reasonably powerful in a curve design. Efficient methods to determine
coordinate positions along a Bezier curve can be set up using recursive calculations.
For example, successive binomial coefficients can be calculated as follows:

1( , ) ( , 1)n kC n k C n k
k

− +
= −
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Fig. 9.1 Examples of Two-Dimensional Bezier Curves Generated from Three, Four and
Five Control Points. Dashed Lines Connect the Control-Point Positions

The following example program illustrates a method for generating Bezier curves:

#include<stdio.h>

#include<graphics.h>

#include<bios.h>

#include<stdlib.h>

typedef double CoArr[4];

char buf[20];

//function definition for drawing Bezier curve

void BezierCurve(CoArr x, CoArr y, int n, int value)

{

int i, a, b;

double delta = 1.0/n;

double t = 0, T;

setcolor(8); //defining color for curve

for(i=0;i<4;i++)

line(x[i],y[i],x[(i+1)%4],y[(i+1)%4]);

for(i = 0; i<n; i++)

{

t = t + delta;

T = 1-t;

a = x[0]*T*T*T+3*t*T*T*x[1]+3*t*t*T*x[2]+t*t*t*x[3];

b = y[0]*T*T*T+3*t*T*T*y[1]+3*t*t*T*y[2]+t*t*t*y[3];

putpixel(a,b,value);



Curve and Surfaces

NOTES

Self-Instructional
166 Material

}

}

main()

{

CoArr x, y;

int val;

int gd = DETECT, gmode;

int key;

int flag = 1;

double *movey;

double *movex;

char *str;

 x[0]=100; y[0]=100;

 x[3]=400; y[3]=100;

 x[1]=200; y[1]=50;

 x[2]=300; y[2]=50;

initgraph(&gd,&gmode,”c:\\tc\\bgi”);

//function calling for drawing Bezier curve

BezierCurve(x,y,1000,15);

movex = &x[1];

movey = &y[1];

while((key = bioskey(0))!=283)

{

cleardevice();

switch(key)

{

 case 3849:

if(flag == 0)

{

flag = 1;

movex = &x[0]; movey = &y[0];

}

else if(flag == 1)

{

flag = 2;
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}

else if(flag == 2)

{

flag = 3;

movex = &x[2]; movey = &y[2];

}

else if(flag == 3)

{

flag = 0;

movex = &x[3]; movey = &y[3];

}

break;

 case 18432:

*movey =*movey - 5; break;

 case 20480:

*movey =*movey + 5; break;

 case 19200:

*movex = *movex - 5; break;

 case 19712:

*movex =*movex + 5; break;

 }

 if(flag ==0)

 {

setcolor(4);

circle(x[3],y[3],3);

 }

 else if(flag == 1)

 {

setcolor(4);

circle(x[0],y[0],3);

 }

 else if(flag == 2)

 {

setcolor(GREEN);
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circle(x[1],y[1],3);

 }

 else if(flag == 3)

 {

setcolor(GREEN);

circle(x[2],y[2],3);

 }

 value = (int)x[1];

 itoa(val,str,10);

 setcolor(4);

 outtextxy(50,50,str);

 value = (int)y[1];

 itoa(val,str,10);

 setcolor(4);

 outtextxy(80,50,str);

 value = (int)x[2];

 itoa(val,str,10);

 setcolor(4);

 outtextxy(50,80,str);

 value = (int)y[2];

 itoa(val,str,10);

 setcolor(4);

 outtextxy(80,80,str);

 BezierCurve(x,y,1000,15);

}

return 0;

}

Properties of Bezier Curves

A very useful property of a Bezier curve is that it always passes through the first
and last control points. That is, the boundary conditions at the two ends of the
curve are as follows:

0(0)P P= ...(9.6)

(1) nP P=
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the endpoints. Three-dimensional points can he calculated from control-point
ordinates as follows:

0 1'(0)P np np− + ...(9.7)

1'(1) n nP np np−− +

Thus, the slope at the starting of the curve is across the line joining the first
two control points, and the slope at the end of the curve is across the line joining
the last two control points. In the same way, the parametric second derivatives of
a Bezier curve at the endpoints are calculated as follows:

2 1 1 0''(0) ( 1){( ) ( )P n n p p p p= − − − − ...(9.8)

2 11''(1) ( 1){( ) ( )n n n nP n n p p p p− −−= − − − −

Another important property of any Bezier curve is that it lies within the
convex hull (convex polygon boundary) of the control points. This follows from
the properties of Bezier blending functions: they are all positive and their sum is
always 1.

,
0

( ) 1
n

k n
k

BEZ u
=

=∑ ...(9.9)

so that any curve position is simply the weighted sum of the control-point positions.
The convex-hull property for a Bezier curve ensures that the polynomial smoothly
follows the control points without erratic oscillations.

          P3 

   P2 

     P1              P0, P4 
 

Fig. 9.2 A Closed Bezier Curve Generated with the Same Starting and End Point
 P1, P2          P3 

  P0          P4 

Fig. 9.3  A Bezier Curve is made to Pass Closer to a Given Coordinate by Assigning
Multiple (P1, P2) Control Points
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Design Techniques Using Bezier Curves

Closed Bezier curves are generated by specifying the first and last control points
at the same position, as in the example shown in Figure 9.2. Also, specifying
multiple control points at a single coordinate position gives more weight to that
position. In Figure 9.3, a single coordinate position is input as two control points,
and the resulting curve is pulled nearer to this position. A Bezier curve can fit any
number of control points, but this requires the calculation of polynomial functions
of a higher degree. When complicated curves are to be generated, they can be
formed by piecing several Bezier sections of lower degree together. Piecing together
smaller parts also gives us better control over the shape of the curve in small
regions. Since Bezier curves pass through endpoints, it is easy to match curve
sections (zero order continuity). Additionally, Bezier curves have the important
property that the tangent to the curve at an endpoint is across the line joining that
control point to the adjacent control point. Therefore, to obtain first-order continuity
between curve sections, we can pick control points of a new section that will be
along the same straight line as control points of the previous section this is shown
in Figure 9.4. We obtain C1 continuity by choosing the first control point of the
new section as the last control point of the previous section and by positioning the
second control point of the new section at position P′0.

       P1 

           P3′ 

     P0′ 

        P0 
     P1′   P2′ 

Fig. 9.4 Piecewise Approximation Curve formed with Two Bezier Sections, Zero-Order
and First-Order Continuity are Attained between Curve Sections by setting P0′ = P2 and

by making Points P1, P2 and P1′ Collinear

Thus, the three control points are collinear and equally spaced. We obtain continuity
between two Bezier sections by calculating the position of the third control point
of a new section in terms of the positions of the last three control points of the
previous section as. Requiring second-order continuity of Bezier curve sections
can be unnecessarily restrictive. This is especially true with cubic curves, which
have only four control points per section. In this case, second-order continuity
fixes the position of the first three control points and leaves us only one point that
we can use to adjust the shape of the curve segment.
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Many graphics packages make available only cubic spline functions. This facilitates
reasonable design flexibility and avoids the increased calculations required with
higher-order polynomials. Cubic Bezier curves can be generated with four control
points. The four blending functions for cubic Bezier curves that are obtained by
substituting n = 3, for k = 0, 1, 2, 3 into equation 9.2 are as follows:

3
0,3

2
1,3

2
2,3

3
3,3

( ) (1 )

( ) 3 (1 )

( ) 3 (1 )

( )

BEZ u u

BEZ u u u

BEZ u u u

BEZ u u

= −

= −

= −

=

...(9.10)

The form of the blending functions determine how the control points influence the
shape of the curve for values of parameter u over the range from 0 to 1. At u = 0,
the only non-zero blending function is BEZ0, 3 which has the value 1. At u = 1, the
only non-zero function is BEZ3, 3 with a value of 1 at that point. Thus, the cubic
Bezier curve will always pass through control points p0 and p3. The other functions,
BEZ1, 3 and BEZ2, 3, influence the shape of the curve, at intermediate values of
parameter u, so that the resulting curve tends toward the points p1, and p2. Blending

function BEZl,3 is maximum at 1
3

u = , and BEZ2, 3 is maximum at 
2
3

u = .

Bezier Surfaces

We can use two sets of orthogonal Bezier curves to design an object surface by
specifying by an input mesh of control points. The parametric vector function for
the Bezier surface is formed as the Cartesian product of Bezier blending functions
as follows:

, , ,
0 0

( , ) ( ) ( )
m n

j k j m k n
j k

P u v p BEZ v BEZ u
= =

= ∑∑ ...(9.11)

with pj, k specifying the location of the  by  control points. Figure 9.5 illustrates two
Bezier surface plots in which the dashed lines connect the control points. The
control points at the surface are connected by dashed lines, and the solid lines
show curves of constant values u and v. Each curve of constant u is plotted by
varying v over the interval from 0 to 1, with u fixed at one of the values in this unit
interval. Curves of constant v are plotted similarly.
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Fig. 9.5 Bezier Surfaces Constructed for (a) m = 3, n = 3, and (b) m = 4, n = 4

Bezier surfaces have the same properties as Bezier curves, and they provide a
convenient method for interactive design applications. For each surface patch, we
can select a mesh of control points in the xy ‘ground’ plane. Then we choose
elevations above the ground plane for the z-coordinate values of the control points.
Patches can then be pieced together using boundary constraints. Figure 9.6
illustrates a surface formed with two Bezier sections. The dashed lines in this
figure connect specify control points. A smooth transition from one section to the
other is assured by establishing both zero-order and first-order continuity at the
boundary line. Zero-order continuity is obtained by matching control points at the
boundary. First-order continuity is obtained by choosing control points along a
straight line across the boundary and by maintaining a constant ratio of collinear
line segments for each set of specified control points across section boundaries.

Fig. 9.6 An Illustration of a Composite Bezier Surface Constructed with Two Bezier
Sections, joined at the Indicated Boundary Line

Example 9.1: A cubic Bezier curve is defined over the control points (1, 1), (2,
3), (4, 4) and (6, 1). Calculate the parametric mid points of this curve and show
that its gradient dy/dx is 1/7.
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3

0,3 ( ) (1 )B u u= −

2
1,3 ( ) 3 (1 )B u u u= −

2
2,3 ( ) 3 (1 )B u u u= −

3
3,3 ( )B u u=

The x-coordinate of the Bezier curve are as follows:

0 0,3 1 1,3 2 2,3 3 3,3( ) ( ) ( ) ( ) ( )x u x B u x B u x B u x B u= + + +

3 2 3(1 ) 6 (1 ) 12 (1 ) 6u u u u u u= − + − + − +

Similarly the, y-coordinates of the Bezier curve are as follows:
3 2 3( ) (1 ) 9 (1 ) 12 (1 )y u u u u u u u= − + − + − +

The parameter u lies between 0 and 1. Therefore the midpoint of the curve is u =
½. By putting this value in x(u) and y(u) equations we get parametric midpoint
coordinates as (27/8, 23/8).
By differentiating the x(u) equation with respect to u we get,

2 2 2 23(1 ) 12 (1 ) 6(1 ) 12 24 (1 ) 18dx u u u u u u u u
du

= − − − − + − − + − +

Similarly by differentiating the y(u) equation with respect to u we get,

2 2 2 23(1 ) (1 ) 9(1 ) 9(1 ) 12 24(1 ) 3dy u u u u u u u u u
du

= − − − + − + − − + − +

The gradient at any point is given by,

u

u

u

dy
dy du

dxdx
du

 
    =    
 
 

The gradient at midpoint for u = ½ is,

1/ 2

3
4u

dy
du =

  = 
 

and
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1/ 2

21
4u

dx
du =

  = 
 

Then we have 
1/ 2

1
7u

dy
dx =

  = 
 

which is equal to the given gradient.

The cubic Bezier curve is given in Figure given below.

            (4, 4) 

 (2, 3) 

      (1, 1)    (6, 1) 

9.4 B-SPLINE CURVE AND SURFACES

Considering again P(t) as the parametric position vector of any point along the
curve, the general expression for a B-Spline curve of degree d – 1 is given by,

12and),()(
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dii                ...(9.12)

where Pi are the input set of n + 1 control points and Bi,d (t) are the n + 1 B-
Spline blending functions defined by the Cox-deBoor recursion formulae as,
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For a cubic B-Spline, the degree d –1 = 3. So d = 4 and hence the number of
control points (n + 1) required is atleast 4 (from Equation (9.12), n + 1 ≤  d).

Suppose we have four control points P0, P1, P2, P3; we can obtain four cubic
B-Spline blending functions B0,4(t), B1,4(t), B2,4(t) and B3,4(t) from Equation
(9.13) such that the cubic B-Spline fitted to those points is given by,

                P(t) = P0 B0,4(t) + P1 B1,4(t) + P2  B2,4(t) + P3 B3,4(t) ...(9.14)



NOTES

Self-Instructional
Material 175

Curve and SurfacesIt follows from Equation (9.12), that unlike the Bezier and Hermite basis
functions, the B-Spline functions are not defined over the entire range of parameter
t. Instead each function is valid only in a limited portion of the total parameter
range, .maxmin tt → If this range )( minmax tt − of t is divided into n + d, i.e., 3 + 4 = 7
sub-intervals, then each of the four cubic blending functions of Equation (9.14)
spans d = 4 sub-intervals. Selected eight (n + d + 1 = 8) parameter values

),70,( ≤≤ jt j satisfying the relation  ,1+≤ jj tt  marks the endpoints of the sub-
intervals. The set of tj , i.e., [t0   t1   t2   t3   t4   t5   t6   t7] is referred to as a knot
vector. We can choose uniform integer knot vector like [0 1 2 3 4 5 6 7] with
evenly spaced knot values. This fixes the range of parameter t as from tmin = t0 =
0 upto tmax = t7 = 7.

Using the recurrence relation Equation (9.13) we obtain the expression for the
four blending functions, by putting d = 4 and varying i from 0 through 3:
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Again putting d = 3 and varying i from 0 through 4 in Equation (9.13) we get
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Finally putting d = 2 and varying i from 0 through 5 in Equation (9.13) we get,
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You need not have to work hard to find out the expressions for Bi,d(t) if you
use the similarity of the successive functions as a shortcut.

As from Equation (9.13) we accept,
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Hence by varying i from 0 through 6 we get,
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Applying Equations (9.21) in (9.20) and successively evaluating Equations
(9.20), (9.19) and (9.15) through (9.18) we get specific expressions for the four
blending functions (of Equation (9.14)) in different sub-intervals of t as,
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The hard work involved in deriving the above functions can be easily avoided
by exploiting the inherent relations among them. Can you find the relation?

Substitute t – 1 for t in the expression of B0,4(t) and right shift the parameter
domain by 1. What you get are the expressions for B1,4(t). Similarly B2,4(t) and
B3,4(t) are obtained by successively shifting B1,4(t) one position (parametrically)
to the right.

Now look at Figure 9.7 where we plot the cubic B-Spline blending functions
against parameter t.

Fig. 9.7  Periodic blending functions of a cubic B-Spline for n = 3 and a uniform
integer knot vector. The  bars show the parameter span of the blending

functions as well as the influence range of corresponding control points.
The  bar represents the only common span of all the

functions from t = 3 to t = 4
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Its obvious that all the blending functions have the same shape. Each successive
blending function is simply a shifted or translated version of the previous function.3

Also note that each of these blending function curves consist of four cubic
segments with inherent continuity (C2 continuity) at the intermediate knot values
(refer Figure 9.8).

Fig. 9.8 Plot of B0,4(t); C
2 continuity exists between the adjacent sections

at the marked points corresponding to knot values 1, 2 and 3

Fig. 9.9 The defining polygon P0 – P1 – P2 – P3 and the cubic B-spline
Pstart – Pend fitted to it. Pstart corresponds to knot value t3 = 3 while Pend  corresponds to

t4 = 4

Now it will be interesting to note that though the blending functions Bi,4(t) are
specifically defined over the entire range of  ),70( ≤≤ tt the resulting cubic B-Spline
curve doesnot span the full range of t. It is limited to a reduced parameter range,
td–1 = 3 to tn+1 = 4, over which the sum of all the four blending functions is equal
to unity, everywhere.
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Curve and SurfacesThus, the effective expression for a cubic B-Spline defined by four control
points P0, P1, P2, P3 and uniform knot vector [0 1 2 3 4 5 6 7] is
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Now from the above expression we can find out the boundary values of the
Spline curve as,
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Unlike the cubic Bezier and Hermite splines, notice that the first and last point
on the cubic B-Spline curve do not correspond to the first and last control points
of the defining polygon. Nor are the tangent vectors (slope) at the first and last
point the same as the first and last spans (slopes) of the defining polygon.

However the curve can be made to pass through the first and last control
points by defining the first three and last three consecutive control points identical
and coincident at the ends of the defining polygon. Without changing the four
control point positions (refer Figure 9.9), we could add four more control points
(two at each end) on the defining polygon. Thus the number of control points (n +
1) will be eight but the shape of the defining polygon remains unchanged (refer
Figure 9.10).
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Fig. 9.10 Effect of triple coincidental vertices at the ends of the defining polygon;
for the fitted cubic B-Spline curve, Pstart = P0 = P1 = P2 and Pend = P5 =  P6 = P7

As it can be proved that for a cubic (d = 4) periodic B-Spline fitted to n + 1
control points P0, P1, P2,..., Pn – 2, Pn – 1, Pn, the start and end points are
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i.e., the curve starts and ends at the first and last control points.

Note that increasing the number of control points doesnot affect the
degree of the curve. Though the shape and length varies we basically get a cubic
B-Spline with four as well as eight control points. However if we want we can
easily fit a (non-cubic) B-Spline curve of degree two, or, four or maximum upto
degree seven (i.e., n) to the same set of eight control points. Thus the B-Spline
concept in general allows the degree of the resulting curve to be changed
(with certain limitation as 2 ≤ d ≤ n + 1) without changing the number of
defining control points. This is a major plus point compared to the Bezier curve
which does not display such flexibility. The degree of a Bezier curve is so intrinsically
associated with the number of defining control points (the degree being always
one less than the number of control points) that to reduce the degree of a Bezier
curve, the only way is to reduce the number of control points. Conversely the only
way to increase the degree of a Bezier curve is to increase the number of control
points. Thus even if we want we cannot directly fit a cubic Bezier curve to a set of
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Curve and Surfaceseight control points or more, we are always restricted to fit only a 7th degree
Bezier curve to eight defining control points or a 8th degree Bezier section to nine
control points, and so on.

Making use of this advantage we can fit a long single piece of periodic cubic
B-Spline approximating several given data points. Considering the proven fact
that if any three consecutive control points are identical, the curve passes
through that coordinate position, we can also force the cubic B-Spline to pass
through (or interpolate) a given data point by defining three consecutive control
points coincident at the desired data position.

Fig  9.11 Periodic cubic B-Spline segment fitted to 11 control points. The curve
is made to pass through P0, P10 and P6 by specifying triple control points at

those positions. The shape of the curve only around point P5 changes as it is moved to
P5´

Another very useful advantage of B-Spline curve in general is its flexibility
to allow a local change of shape without altering the entire curve shape. To
explain this ‘local control’ property let us consider the periodic cubic B-Spline
fitted to 11 control points, P0, P1,...,P10 as shown in Figure 9.11.

So, for this curve (d = 4) 11 blending functions. B0,4(t), B1,4(t),..., B10,4(t) are
used to blend the corresponding control points, i.e., P0, P1,...,P10 respectively to
yield the curve shape; each control point thus affects the shape of the curve only
over a range of parameter values where its associated basis function is non-zero.
For a choice of uniform integer knot vector (0 to 15) dividing the entire parameter
range in 14 intervals, any change in position of the P0 control point only effects the
shape of the curve upto t = 4. Similarly changing the position of the P5 control
point affects the curve shape in the region t = 5 to t = 9. The dotted curve section
in Figure 9.11 represents this localized change as P5 is moved to P5´, the remaining
portion of the curve (i.e., for 3 < t < 5 and 9 < t < 11) remains unchanged.

This is in contrast to the Bezier Splines, which do allow for local control of the
curve shape. If we reposition any one of the control points, the entire curve will be
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affected. The reason behind is, all the Bezier blending functions are non-zero for
all parameter values over the entire curve, except at the start point and endpoint
(i.e. for 0 < t < 1).

Now coming back to the discussion of cubic B-Spline with four defining control
points, we can express Equation (9.22) in a matrix form similar to those for Hermite
splines and Bezier splines. For this we have to reparameterize the blending functions
so that parameter t within interval 3 to 4 is mapped to the interval 0 to 1. If the
equivalent parameter in 0 to 1 interval is termed u, then
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Now replace u + 3 for t in Equation (9.22).

On simplifying we get

10where)(
6
1)1333(

6
1

)463(
6
1)1(

6
1)(

3
3

2
23

1
23

0
3

≤≤






+







 +++−+







 +−+







 −=

uPuPuuu

PuuPutP

In matrix formulation the above expression becomes,
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Thus the characteristic basis matrix for a periodic cubic B-Spline with 4 control
points P0, P1, P2, P3 is,
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9.5 BASIC ILLUMINATION MODELS

When we view an opaque non-luminous object, we observe the light reflected from
the surfaces of the object. The total reflected light is equal to the sum of the
contributions from light sources and other reflecting surfaces in the scene. This is
illustrated in Figure 9.12. Thus, if adjacent models are illuminated, a surface that is
not directly exposed to a light source may still be visible. Sometimes, reflecting
surfaces, such as the walls of a room, are termed light-reflecting sources. We use
the term light source to mean an object that is emitting radiant energy in the form of
light waves, such as an electric bulb or the sun.
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Curve and SurfacesIn general, a luminous object can be both a light source and a light reflector.
For example, a plastic globe with a light bulb inside both emits and reflects light
from the surface of the globe. Emitted light from the globe may then illuminate
other objects in the surrounding area.

             Light source 

       Reflecting source 

Fig. 9.12 Light Obtained from an Opaque Non-Luminous Surface is a
Combination of Reflected Light From a Light Source and Reflections

of Light Reflections from Other Surfaces

Fig. 9.13 Diverging Ray Paths from a Point Light Source

The simplest model for a light emitter is a point source. Rays from the source then
follow radial diverging paths from the source position, as shown in Figure 9.13.
This light-source model is an approximation for sources whose dimensions are
small compared to the size of the objects in the scene. The light sources, such as
the sun, that are sufficiently far from the scene can be accurately modelled as point
sources.

A nearby source, such as the long fluorescent light in as shown in Figure
9.14, is more accurately modelled as a distributed light source. In this case, the
illumination effects cannot be approximated realistically with a point source, because
the area of the source is not small compared to the surfaces in the scene. An ideal
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model for the distributed source is one that considers the accumulated illumination
effects of the points over the surface of the source. When light is incident on an
opaque surface, a portion of it is reflected and the rest is absorbed.

The amount of incident light reflected by a surface of an object depends
upon its material. Glossy materials reflect maximum amount of incident light and
rough surfaces absorb maximum amount of incident light. Similarly, for an illuminated
transparent surface some of the incident light will be reflected and some will be
transmitted through the material. Surfaces, which are rough (or grainy) tend to
scatter the reflected light in all directions.

Fig. 9.14 An Object Illuminated with a Distributed Light Source
This scattered light is also called diffuse reflection. A very rough surface produces

primarily diffuse reflections, so that the surface looks equally bright from all viewing
directions. Figure 9.15 illustrates diffuse light scattering from a surface. What we call
the colour of an object is the colour of the diffuse reflection of the incident light. For

example, a blue object illuminated by a white light source, reflects the blue component
of the white light and totally absorbs all other components. If the blue object is viewed

under a red light, it appears black since the entire incident light is absorbed by the
object. Additionally, to diffuse reflection, light sources create highlights, or bright spots,
called specular reflection. This highlighting effect is more evident on shiny surfaces than
on dull surfaces. An illustration of specular reflection is shown in Figure 9.16.

Fig. 9.15 Illustration of Diffus Fig. 9.16 Specular Reflection
Reflections from a Surface Superimposed on Diffuse

Reflection Vectors
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Empirical models provide simple and fast methods for calculating surface intensity
at a given point, and they produce reasonably good results for most scenes. Lighting
calculations are based on the following:

• Optical properties of surfaces
• Light-source specifications
• Background lighting conditions

Optical parameters can be used to set surface properties of an object, such
as matte, glossy, transparent and opaque. This operation controls the amount of
reflection and absorption of incident light on an object. All kinds of light sources
are considered to be point sources, specified with a coordinate position and an
intensity value (i.e., colour, brightness and contrast).

Ambient Light

An object surface which is not exposed directly to a light source is visible due to
the light reflected form the nearby objects that are illuminated. In the basic illumination
model, we can set a general level of brightness for a scene. This is a simple way to
model the combination of light reflections from various surfaces to produce a
uniform illumination called the background light, or ambient light. The background
light has no directional or spatial characteristics. The amount of background light
incident on each object is a constant for all surfaces and over all directions. We
can set the level for the ambient light in a scene with parameter AL, and each
surface is then illuminated with this constant value. The resulting reflected light is a
constant for each surface, independent of the spatial orientation and the viewing
direction of the surface. But the intensity of the reflected light for each surface
depends on the optical properties of the surface, that is, how much of the incident
energy is to be reflected and how much is to be absorbed.

Diffuse Reflection

The background-light reflection is an approximation of global diffuse lighting effects.
Diffuse reflections are constant over each surface in a scene, independent of the
viewing direction. The fractional amount of the incident light diffusely reflected,
can be set for each surface with parameter Id. It is also called diffuse reflectivity, or
diffuse-reflection coefficient. Parameter Id is assigned a constant value in the interval
0 to 1, according to the reflecting properties we want the surface to have. If we
want a highly reflective surface, we set the value of Id near to 1. This produces a
bright surface with the intensity of the reflected light about that of the incident light.
To simulate a surface that absorbs most of the incident light, we set the reflectivity
to a value that is near to 0. The parameter Id is a function of surface colour, but for
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the time being we assume Id as a constant.

      N 

     ϕN    ϕN  
     Radiant Energy Direction 

      A 

Fig. 9.17 Radiant Energy from a Surface area A in Direction jN Relative to the Surface
Normal Direction

If a surface is exposed only to an ambient light, we can express the intensity of the
diffuse reflection at any point on the surface as follows:

Intensity of diffused reflection = Id.AL
...(9.23)

Since ambient light produces a flat uninteresting shade for each surface, scenes
are rarely rendered with ambient light alone. At least one light source is included in
a scene, often as a point source at the viewing position of the object. We can
model the diffuse reflections of illumination from a point source in the same way.
That is, we assume that the diffuse reflections from the surface are scatted with
equal intensity in all directions, independent of the viewing direction. Such surfaces
are sometimes referred to as ideal diffuse reflectors. They are also called Lambertian
reflectors, since radiated light energy from any point on the surface is directed by
Lambert’s cosine rule. This rule states that the radiant energy from a small surface
area ‘A’ in a direction ϕN relative to the surface normal is proportional to cosϕN. ,
as shown in Figure 9.17. The light intensity, though, depends on the radiant energy
per projected area perpendicular to direction ϕN which is A × cosϕN. Thus, for
Lambertian reflection, the intensity of light is the same over all viewing directions
of an object.

 (a)      (b) 

Fig. 9.18 A Surface Perpendicular to the Direction of the Incident Light in
(a) is more Illuminated than an Equal Sized Surface at a Tilted Surface in

(b) to the Incoming Light Direction
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brightness of the surface depends on the orientation of the surface relative to the
light source. A surface which is oriented perpendicular to the direction of the incident
light appears brighter than that of the surface tilted at an angle to the direction of
the incoming light. This can easily be seen by holding a white sheet of paper or
smooth cardboard parallel to a nearby window and slowly rotating the sheet away
from the window direction. As the angle between the surface normal and the
incoming light direction increases, the incident light falling on the surface decreases.
Figure 9.18 illustrates this.

This figure shows a beam of light incident on two equal area plane surface
patches with different spatial orientations relative to the incident light direction
from a distant source (parallel incoming rays). If we denote the angle of incidence
between the incoming light direction and the surface normal as Φ, illustrated in
Figure 9.19, then the projected area of a surface patch perpendicular to the light
direction is proportional to cosΦ. Thus, the amount of illumination (or the number
of incident light rays cutting across the projected surface patch) depends on cosΦ.
If the incoming light from the source is perpendicular to the surface at a particular
point, that point is fully illuminated.

  N 

   Φ                 Φ       A.cosΦ 
 Incident Light 

Fig. 9.19 An Illuminated Area projected Perpendicular to the
Path of the Incoming Light

As the angle of illumination moves away from the surface normal, the brightness of
the point decreases continuously. If IL is the intensity of the point light source, then
the diffuse reflection equation for a point on the surface can be written as follows:

IL(Diff) = Id × IL cosΦ
...(9.24)

A surface is illuminated by a point source only if the angle of incidence is in the
range 0°–90° (cosΦ is in the interval from 0–1). When cosΦ is negative, the light
source is ‘behind’ the surface.
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       N 
 To the light source    L 
         Φ  

 
 

Fig. 9.20 Angle of Incidence  between the Unit Light-Source Direction Vector L and
the Unit Surface Normal N

If N is the unit normal vector to a surface and L is the unit direction vector to the
point light source from a position on the surface, then cos Φ = N.L and the diffuse
reflection equation for a single point-source illumination is as follows:

).(, LNIkI IddiffI = ...(9.25)

The reflections for point-source illumination may be calculated in world coordinates
or viewing coordinates before shearing and perspective transformations are applied.
These transformations may change the orientation of normal vectors so that they
are no longer perpendicular to the surfaces they represent. Figure 9.21 illustrates
the application of equation 9.25 to positions over the surface of a sphere, using
various values of parameter kd between 0 and 1. Each projected pixel position for
the surface is assigned intensity as calculated by the diffuse reflection equation for
a point light source. The rendering in this figure illustrates single point-source lighting
with no other lighting effects. This is what we expect to see if we shine a small light
on the object in a completely dark room. In case of general scenes, however, we
expect some background lighting effects in addition to the illumination effects
produced by a direct light source. We can combine the point and ambient source
intensity calculations to obtain an expression for the total diffuse reflection.
Additionally, many graphics packages introduce an ambient-reflection coefficient
ka to modify the ambient light intensity Ia for each surface. This simply provides us
with an additional parameter to adjust the light conditions in a scene. Using
parameter ka we can write the total diffuse reflection equation as follows:

).( LNIkIkI Idaadiff += ....(9.26)

where both ka and kd depend on surface material properties and are assigned
values in the range from 0 to 1.

kd with ka = 0.0

   0.0          0.2           0.4         0.6         0.8        1.0

Fig. 9.21 Diffuse Reflections from a Spherical Surface Illuminated by a Point Light
Source for Values of the Diffuse Reflectivity Coefficient in the interval 0 ≤ kd ≤ l
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Illumination models produce a linear range of intensities. The RGB colour (0.125,
0.125 and 0.125) obtained from a lighting model represents one-half the intensity
of the colour (0.25, 0.25 and 0.25). Usually, these calculated intensities are then
stored in an image file as integer values, with one byte for each of the three RGB
components. This intensity file is also linear, so that a pixel with the value (32, 32
and 32) has half the intensity of a pixel with the value (64, 64 and 64). A video
monitor is a nonlinear device. If we set the voltages for the electron gun proportional
to the linear pixel values, the displayed intensities are shifted according to the
monitor response curve. To correct monitor nonlinearities, graphics system uses a
video lookup table that adjusts the linear pixel values. The monitor response curve
is described by the exponential function,

γaVI =
...(9.27)

Parameter I is the displayed intensity, and parameter V is the input voltage. Values
for parameters a and g depend up on the characteristics of the monitor used in the
graphics system. Thus, if we want to display a particular intensity value I, the
correct voltage value to produce this intensity is,

a
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γ/1)(
=

...(9.28)
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Fig. 9.22 A Video Lookup Correction Curve for Mapping Pixel Intensities to Electron-
Gun Voltages using Gamma Correction with γ  = 2.2

This calculation is referred to as gamma correction of intensity. Monitor gamma
values are typically between 2.0 and 3.0. The National Television System
Committee (NTSC) signal standard has γ = 2.2. Figure 9.22 shows a gamma
correction curve using the NTSC gamma value. Equation 9.30 can be used to set
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up the video lookup table that converts integer pixel values in the image file to
values that control the electron-gun voltages. We can combine gamma correction
with logarithmic intensity mapping to produce a lookup table that contains both
conversions. If I is an input intensity value from an illumination model, we first
locate the nearest intensity 4 from a table of values created with equations 9.28 or
9.29. Alternatively, we can determine the level number for this intensity value with
the calculation. Then we compute the intensity value at this level using equation
9.29.









=

0

log
I
Iroundk γ ...(9.29)

Once we have the intensity value Ik, we can calculate the electron-gun voltage,

γ/1








=
a
IV k

k ...(9.30)

The values Vk can then be placed in the lookup tables. Values for k are stored in
the frame-buffer pixel positions. If a particular system has no lookup table, computed
values for Vk can be stored in the frame buffer, directly. The combined conversion
to a logarithmic intensity scale followed by calculation of the V, using equation
9.30 is also sometimes referred to as gamma correction.
We cannot combine two intensity-conversion processes, if the video amplifiers of
a monitor are designed to convert the linear input pixel values to electron-gun
voltages. Here, gamma correction is built into the hardware, and the logarithmic
values 1, must be pre-computed and stored in the frame buffer (or the colour
table).

 
(b) 

 
(c) 

 
(a) 

 
(d) 

Fig. 9.23 A Continuous-Tune Photograph (a) printed with (b) Two Intensive Levels
(c) Four Intensity Levels (d) Eight Intensity Levels
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Generally, high quality computer graphics systems provide 256 intensity levels for
each colour component, but acceptable displays can be obtained for many
applications with fewer levels as well. A four-level system provides minimum shading
capability for continuous-tone images, while photorealistic images can be generated
on systems that are capable of 32–256 intensity levels per pixel. Figure 9.23(a)
shows a continuous-tone photograph. When a small number of intensity levels are
used to reproduce a continuous-tone image, the borders between the different
intensity regions are clearly visible. In the two-level reproduction, the features of
the photograph are just hardly identifiable. Using four intensity levels, we start to
identify the original shading patterns, but the contouring effects are obvious. With
eight intensity levels, contouring effects are still obvious, but we begin to have a
better indication of the original shading. At 16 or more intensity levels, contouring
effects diminish and the reproductions are very close to the original. The
reproductions of continuous-tone images using more than 32 intensity levels show
only very subtle differences from the original.

9.6 POLYGON RENDERING METHODS

In this section, we discuss the applications of an illumination model to the rendering
of graphics objects which are formed with polygon surfaces. Objects are usually
polygon-mesh approximations of curved-surface objects, but they may also be
polyhedra which are not curved-surface approximations. The scan-line algorithm
typically applies a lighting model to obtain polygon surface rendering in one of two
possible ways. Each polygon can be rendered by applying single intensity, or the
intensity that can be obtained at each point of the surface using an interpolation
scheme.

Constant-Intensity Shading

A fast and simple method for rendering an object with polygon surfaces is constant-
intensity shading, also known as flat shading. This method calculates a single intensity
for each polygon. All specific points over the surface of the polygon are then
highlighted with the same intensity value. Constant shading can be useful for quickly
displaying the general appearance of a curved surface.
In general, flat shading of polygon facets provides an accurate rendering for an
object if all of the following assumptions are valid:

(i) All light sources illuminating the object are sufficiently far from the surface
of the object so that N.L and the attenuation function are constant over the
surface.

(ii) The viewing position is sufficiently far from the surface so that V.R is constant
over the surface.
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    N2 

  N1  
             V 
          N3  
     N4  
   

Fig. 9.24 The Normal Vector at Vertex V is calculated as the Average of the
Surface Normals for each Polygon Sharing that Vertex

The object in Figure 9.24 is a polyhedron and is not an approximation of an
object with a curved surface. Even if all of these conditions are not true, we can
still reasonably approximate surface-lighting effects using small polygon facets with
flat shading and calculate the intensity for each facet, say, at the centre of the
polygon.

The Gouraud Shading

This scheme of intensity-interpolation was developed by Gouraud and is generally
referred to as Gouraud shading. It can render a polygon surface by linearly
interpolating intensity values across the surface. The intensity values for each polygon
can be matched with the values of adjacent polygons along the common edges.
This eliminates the intensity discontinuities that can occur in flat shading. Each
polygon surface can be rendered with Gouraud shading with the help of the
following calculations:
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...(9.31)

For this purpose, the average unit normal vector is calculated at each polygon
vertex. Then an illumination model is applied to each vertex to calculate the vertex
intensity. Now the vertex intensities are linearly interpolated over the surface of
the polygon. At each polygon vertex, we determine a normal vector by determining
the average of the surface normals of all polygons sharing that vertex, as illustrated
in Figure 9.24. Thus, for any vertex position denoted by V, the unit vertex normal
can be obtained. Once the vertex normals are determined, the intensity at the
vertices can be determined from a lighting model. Figure 9.25 demonstrates the
next step that interpolates intensities along the polygon edges. The intensity for
each scan line, at the intersection of the scan line with a polygon edge is linearly
interpolated from the intensities at the edge endpoints. As seen in Figure 9.25, the
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line at point D. A fast method to obtain the intensity at point D is to interpolate
between intensities IA and IB using only the vertical displacement of the scan line.
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Fig. 9.25 The Intensity at Point D is Linearly Interpolated from the
Intensities at Vertices A and B.

The intensity at point E is interpolated linearly, from intensities at vertices B and C.
An interior point P is then assigned an intensity value that is interpolated linearly
from intensities at positions D and E. In the same way, the intensity at the right
intersection of this scan line (point E) is interpolated from intensity values at vertices
B and C. Once these bounding intensities are established for a scan line, an interior
point (such as point P in Figure 9.25) is interpolated from the bounding intensities
at points D and E as follows:
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Incremental calculations are used to obtain successive edge intensity values between
scan lines and to obtain successive intensities along a scan line. As shown in Figure
9.26, if the intensity at edge position (x, y) is interpolated as follows:
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then we can obtain the intensity along this edge for the next scan line, y – 1, as
follows:
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...(9.35)
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Scan lines 

Fig. 9.26 Incremental Interpolation of Intensity Values along a Polygon Edge
for Successive Scan Lines

 
  (a)     (b)     (c) 

Fig. 9.27 (a) A Polygon Mesh Approximation of an Object (b) Object is rendered
with Flat Shading (c) Object is rendered with Gouraud Shading

Similar calculations can be used to obtain intensities at successive horizontal pixel
positions along each scan line. When surfaces are to be rendered in colour, the
intensity of each colour component is calculated at the vertices. Gouraud shading
can also be combined with a hidden-surface algorithm to fill in the visible polygons
along each scan line. Figure 9.27 illustrates an object that has been shaded using
the Gouraud method. Gouraud shading is used to remove the intensity discontinuities
associated with the constant-shading model, but it has some other drawbacks.
Sometimes highlights on the surface are displayed with anomalous shapes, and the
linear intensity interpolation can produce bright or dark intensity streaks (also
called Mach bands) to appear on the surface. Such effects can be reduced by
dividing the surface into a greater number of polygon faces or by using other
methods, such as Phong shading, that require more calculations.

936.1 Phong Shading

A more exact method for rendering a polygon surface interpolates the normal
vectors, and then applies an illumination model to each surface point. This method
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normal vector interpolation shading. It generally displays more realistic highlights
on the surface of an object and reduces the Mach-band effect that was present in
the earlier shading schemes. A polygon surface rendered using Phong shading
carries out the following steps:

(i) Calculation of the average unit normal vector at each polygon vertex
(ii) Interpolation of the vertex normals linearly, over the surface of the polygon
(iii) Application of an illumination model beside each scan line to determine the

projected pixel intensities for the surface points
Interpolation of surface normals along a polygon edge between two vertices is
illustrated by the Figure 9.28. The normal vector N for the scan-line intersection
point along the edge between vertices A and B can be determined by vertically
interpolating between edge endpoint normals as follows:
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Fig. 9.28 Interpolation of Surface Normals along a Polygon Edge

The incremental methods can be used to evaluate normals between scan lines and
along each individual scan line. The illumination model is applied at each pixel
position along a scan line to determine the surface intensity at that point. Intensity
calculations (by using an approximated normal vector at each point of the scan
line) produce more accurate results than the direct interpolation of intensities, as
we have seen in Gouraud shading. However, the drawback is that Phong shading
requires considerably more computations.

9.6.2 Fast Phong Shading

Surface rendering with Phong shading can be accelerated using approximations in
the illumination-model calculations of normal vectors. Fast Phong shading
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approximates the intensity calculations using triangular surface patches and Taylor-
series expansion. Since Phong shading interpolates normal vectors from vertex
normals, we can express the surface normal N at any point (x, y) over a triangle as
follows:

CByAxN ++=
...(9.37)

where vectors A, B, and C are determined from the three vertex equations,

3,2,1for, =++= kCByAxN kkk

...(9.38)
Omitting the reflectivity and attenuation parameters, the calculation for light-source
diffuse reflection can be written from a surface point (x, y) as follows:
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We can rewrite this expression in the following form:

)(
),(

22 ihygxfyexydx
cbyaxyxI diff

+++++

++
=

...(9.40)

where parameters such as a, b, c, and d are used to represent the various dot
products. For example,
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...(9.41)

Finally, we can state the denominator in equation 9.40 as a Taylor-series expansion
and retain terms up to the second degree in x and y. This gives the following:
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Curve and Surfaceswhere each Ti is a function of parameters a, b, c, and so on. Using forward
differences, we can evaluate equation 8.20 with only two additions for each pixel
position (x, y), once the initial forward-difference parameters have been evaluated.
Fast Phong shading reduces the Phong-shading calculations. However, it takes
approximately twice the time to render a surface with fast Phong shading as it
does with Gouraud shading. As far as efficiency is concerned, normal Phong shading
using forward difference methods takes about 6–7 times longer than Gouraud
shading. Fast Phong shading for diffuse reflection can be extended to include
specular reflections. Calculations similar to those for diffuse reflections can be
used to evaluate specular terms such as snHN ).(  in the basic illumination model.
Additionally, we can generalize the algorithm to include polygons other than triangles
and to include finite viewing positions.

Fig. 9.29 Tracing a Ray from the Projection Reference Point Through  a Pixel Position
with Multiple Reflections and Transmissions

Check Your Progress

1. Write a short note on Bezier curve.
2. What are the factors on which lighting calculations depends?
3. Discuss the constant-intensity shading method.
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9.7 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Bezier curve is the spline approximation method that was developed by the
French engineer Pierre Bezier to design automobile bodies. The Bezier spline
has a number of properties that makes it highly useful and convenient for
surface and curve design.

2. Lighting calculations are based on the following:
(i) Optical properties of surfaces
(ii) Light-source specifications
(iii) Background lighting conditions

3. A fast and simple method for rendering an object with polygon surfaces is
constant- intensity shading, also known as flat shading. This method calculates
a single intensity for each polygon. All specific points over the surface of the
polygon are then highlighted with the same intensity value.

9.8 SUMMARY

• Bezier curve is the spline approximation method that was developed by the
French engineer Pierre Bezier to design automobile bodies. The Bezier spline
has a number of properties that makes it highly useful and convenient for
surface and curve design.

• Many graphics packages make available only cubic spline functions. This
facilitates reasonable design flexibility and avoids the increased calculations
required with higher-order polynomials.

• Two sets of orthogonal Bezier curves to design an object surface by
specifying by an input mesh of control points.

• An opaque non-luminous object, we observe the light reflected from the
surfaces of the object. The total reflected light is equal to the sum of the
contributions from light sources and other reflecting surfaces in the scene.

• An object surface which is not exposed directly to a light source is visible
due to the light reflected form the nearby objects that are illuminated. In the
basic illumination model, we can set a general level of brightness for a scene.

• The background-light reflection is an approximation of global diffuse lighting
effects. Diffuse reflections are constant over each surface in a scene,
independent of the viewing direction.

• The applications of an illumination model to the rendering of graphics objects
which are formed with polygon surfaces. Objects are usually polygon-mesh
approximations of curved-surface objects, but they may also be polyhedra
which are not curved-surface approximations.
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Curve and Surfaces• A more exact method for rendering a polygon surface interpolates the normal
vectors, and then applies an illumination model to each surface point. This
method was developed by Phong Bui Tuong. Therefore it is called Phong
shading, or normal vector interpolation shading.

9.9 KEY WORDS

• Bezier Curve: It is the spline approximation method that was developed
by the French engineer Pierre Bezier to design automobile bodies.

• Phong Shading:- A more exact method for rendering a polygon surface
interpolates the normal vectors, and then applies an illumination model to
each surface point. This method was developed by Phong Bui Tuong.

• Illumination Model: An illumination model, also called a shading model
or a lighting model, calculates the intensity of light that one can see at a given
point on the surface of an object.

9.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the properties of Bezier curve.
2. What are Bezier surfaces?
3. Discuss the various types of polygon rendering methods.

Long Answer Questions

1. Explain the design techniques using Bezier curve.
2. What do you understand by B-spline curve and surfaces? Explain.
3. Write a detailed note on illumination models.
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BLOCK - IV
3D GEOMETRIC TRANSFORMATION

UNIT 10 3D GEOMETRIC
TRANSFORMATIONS

Structure
10.0 Introduction
10.1 Objectives
10.2 Three-Dimensional Geometry

10.2.1 Translation
10.2.2 Scaling
10.2.3 Rotation
10.2.4 Composite Transformations

10.3 Other Transformations
10.3.1 Reflection
10.3.2 Shear

10.4 Answers to Check Your Progress Questions
10.5 Summary
10.6 Key Words
10.7 Self Assessment Questions and Exercises
10.8 Further Readings

10.0 INTRODUCTION

In this unit‚ you will learn about the three basic transformation i.e. translation‚
rotation and scaling in 3D geometry. Using two-dimension techniques, you can
show only some of the graphics applications such as bar charts, pie charts and
graphs. However, most natural objects can only be shown in three dimensions.
3D graphics allows you to check the structure in different directions. When you
discuss two-dimensional rotations in the xy-plane, you need to consider only
rotations about axes that are perpendicular to the xy-plane. You can select any
spatial orientation in the three dimensional space, as a composite of three rotations,
one for each of the three Cartesian axes. On the other hand, a user can easily set
up a general rotation matrix, given the orientation of the axis and the required
rotation angle. Reflection and shear are the two other transformations which are
also discussed.



NOTES

Self-Instructional
Material 201

3D Geometric
Transformations10.1 OBJECTIVES

After going through this unit, you will be able to:
• Explain the translation‚ rotation and scaling in three dimensional geometry
• Understand reflection and shear transformation in three dimensional geometry

10.2 THREE-DIMENSIONAL GEOMETRY

The three-dimensional system has three axes: x, y and z axis. The orientation of
coordinate system is determined by two systems: the right hand system and the left
hand system. In the right handed system, the thumb of the right hand points in the
positive z direction as one curls the fingers of the right hand from x into y, and in
the left handed system the thumb points in the negative z direction. In our description
we have used the right-handed system.

  Y 
     –1 

       X 

 1 
 Z 

Fig. 10.1 (a) Right-Handed System

 
Y 

     1 

       X 

 –1 
 Z 

Fig 10.1 (b) Left- Handed System
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As in the case of a two-dimensional system, both Y and Z coordinates change
proportionately to X. This is given as follows:

)/()()/()( 121211 xxyyxxyy −−=−−

 )/()()/()( 121211 xxzzxxzz −−=−−

where ),,( 111 zyx and ),,( 222 zyx  are the two points. So we can represent the
parametric form of a line as,

x = (x2 – x1) u + x1

y = (y2 – y1) u + y1

z = (z2– z1) u + z1

The equation of the plane is given by,

         0=+++ DCzByAx
We can show that the constants may be divided out of the equation so that,

                           A1x + y + C1z + D1 =0
where A1 = A/B

C1 = C/ B
D1 = D/B

The coordinates of the three points are, and. Then the equations of the planes are
as follows:

A1x1 + y1 + C1z1 + D1 = 0
A1x2 + y2 + C1z2 + D1 = 0
A1x3 + y3 + C1z3 + D1 = 0

If we solve these three equations then we get normalization as follows:
A2 = A/D
B2 = B / D
C2 = C / D
D2 = D/ d

where d = 2 2 2( )A B C+ +

The distance between a point (x, y, z) and the plane is given by,
L = | A2x + B2y + C2z + D2 |

The sign of this indicates whether a point lies on the front or the back of a plane.

Three-dimensional Transformations

As in two-dimensional transformations, there are three basic transformations for
three-dimensional geometry. These are as follows:

(i) Translation (ii) Scaling (iii) Rotation
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10.2.1 Translation

In 3D homogenous coordinate representation, a transformation matrix for the
translation of P = (x, y, z) to the position P′ = is given by,

[x1, y1, z1] = [x, y, z, 1] 

1 0 0 0
0 1 0 0
0 0 1 0

1x y zt t t

 
 
 
 
 
  

where tx, ty and tz are translation factors. So,
x1 = x + tx

y1 = y + ty

z1 = z + tz

  Y   P′ (x′, y′, z′) 

     P (x, y, z) 

   V 
              X 

 Z 

Fig. 10.2 Three Dimensional Translation

We can determine the inverse of this by making the values of tx, ty and tz negative.
This produces a translation in the opposite direction, and the product of a translation
matrix and its inverse produces the identity matrix.

10.2.2 Scaling

Two-dimensional scaling is used to change the size of an object. Scaling
transformation matrix will be represented as folows:

[ ]' ' ' 1x y z  = [ ]1x y z

0 0 0
0 0 0
0 0 0
0 0 0 1

x

y

z

s
s

s

 
 
 
 
 
 
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          Y  

                               X 

  
  Z 

Fig. 10.3 Three Dimensional Scaling

Or we can write it in the form of an equation as follows:
x′ = x * sx,        y′ = y * sy  and      z′ = z * sz

10.2.3 Rotation

Rotation about the origin in two-dimensional geometry considers an angle of rotation
and a centre of rotation. But rotation in three-dimensional geometry is more complex
than in two-dimensional geometry. Because in this case we consider an angle of
rotation and an axis of rotation. Therefore there are three cases from where we
can select one of the positive x-axis, y-axis and z-axis as an axis of rotation.

Rotation about x-axis

     X 

        Y 

           α        θ 
              P′ (0, y′, z′) 

 Z                  
  P (0 y, z) 

Fig. 10.4 Rotation about x-axis

We can see from Figure 10.4 that,
x′ = x
y′ = r cos (α + θ) = r cosα cosθ – r sinα sinθ
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Since r cosα = y  and r sinα = z then the equation becomes,
y′ = y cosθ – z sinθ

and z′ = r sin (α + θ) = r sinα cosθ + r cosα sinθ
    z′ = z cosθ + y sinθ
So the equation becomes,

x′ = x
y′ = y cosθ – z sinθ
z′ = y sinθ + z cosθ

or the equations can be written in the matrix form as follows:

'
'
'

1

x
y
z

 
 
 
 
 
 

= 

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

 
 θ − θ 
 θ θ
 
   1

x
y
z

 
 
 
 
 
 

Rotation about y-axis

When we rotate the object about the y-axis, then the equations becomes,
x′ = x cosθ + z sinθ
y′ = y
z′ = –x sinθ + z cosθ

           Y      

          X 

         α        θ 
              P′ (x′, 0, z′) 

 Z 
   P (x, 0, z) 

Fig. 10.5 Rotation about y-axis

or we can write the above equation in the matrix form as follows:

'
'
'

1

x
y
z

 
 
 
 
 
 

= 

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

θ θ

θ θ

 
 
 
 −
 
  1

x
y
z

 
 
 
 
 
 
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Rotation about z-axis

     Z      

          X 

         α        θ 
              P′ (x′, y′, 0) 

 Y 
   P (x, y, 0) 

Fig. 10.6 Rotation about z-axis

The equations about the z-axis rotation can be written as follows:
x′ = x cosθ – y sinθ
z′ = z
y′ = z sinθ + y cosθ

or the equations can be written in the matrix form as follows:

'
'
'

1

x
y
z

 
 
 
 
 
 

= 

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

θ θ
θ θ

− 
 
 
 
 
  1

x
y
z

 
 
 
 
 
 

Rotations about an Arbitrary Line

A rotation matrix for any axis that does not overlap with a coordinate axis can be
setup as a composite transformation. This involves combinations of the coordinate
axis rotations and translations in either sequence. In the special case where an
object is to be rotated about an axis (parallel to one of the coordinate axis), we
can achieve the desired rotation by following the given transformation sequence:

(i) Translating the object such that the rotating axis coincides with the parallel
coordinate axis

(ii) Performing the specified rotation about the axis
(iii) Translating the object by moving the rotation axis back to its original position.
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These steps are illustrated in Figure 10.7.

    Y          Y 
 
 
 
 
 
            Rotation axis 
 
 
     X            X 
Z            Z 
  (a)       (c) 
 
    Y          Y 
 
 
 
 
          Rotation axis 
 
 
     X            X 
 
Z            Z 
  (b)       (d) 

Fig. 10.7 Sequence of Transformations for Rotation of the Object about Axis Parallel to
X-axis

Any coordinate position P on the object is transformed with the sequence as
follows:

P′ = T –1 . Rx (θ). T. P
which is the same as the two-dimensional transformation sequence for rotation
about an arbitrary point. When we wish to rotate an object about an axis that is
not parallel to one of the coordinate axes, we need to perform a sequence of
additional transformations. The sequence also includes rotations to align the axis
with a selected coordinate axis and finally, to bring the axis back to its original
orientation. We can perform the required rotation in the following steps:

(i) Translation of the object so that the rotation axis passes through the coordinate
origin

(ii) Rotation of the object so that the axis of rotation coincides with one of the
coordinate axes

(iii) Performing the specified rotation about the axis
(iv) Performing inverse rotations to bring the rotation axis back to its original

orientation
(v) Performing the inverse translation to bring the rotation axis back to its original

position
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The parametric equation for the line is as follows:
x2 = x1 + Au
y2 = y1 + Bu
z2 = z1 + Cu

is the point on the line and (A, B, C) vector gives the direction.
Step 1: Translation,

T = 

1 1 1

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

 
 
 
 
 − − −  

So the point (x1, y1, z1) moves to the origin.
Now,

T1 = 

1 1 1

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

 
 
 
 
 
  

T1 gives a translation in the opposite direction.
Step 2: In this step we have to align a axis on the Z-axis. For this we follow the
given two steps:

(i) Rotation about X-axis by an angle k such that the shadow lies on Z-axis
(ii) Rotate about Y-axis by an angle L so that an axis will be aligned on the Z-

axis

Y 

 (0, B, C)   (A, B, C) 

        X 
      k 

 Z 

Fig. 10.8 Rotation about x-axis by an Angle k
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Now we find the transformation matrix for each case.
(i) The axis (A, B, C) translated to the origin having its shadow in the yz-plane.

So A = 0. The shadow is (0, B, C). The length of an axis is,
U = (A2 + B2 + C2)0.5

And the length of a shadow is,
V = (B2 + C2)0.5

Rotate about X-axis by an angle k so that the shadow will be on Z-axis
From the above diagram we can calculate sin k and cos k as follows:

sin k = B/V
cos k = C/V

The rotation about an axis by an angle k is given by a transformation matrix as
follows.

Rx  = 

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

k k
k k

 
 
 
 −
 
 

 = 

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1

C V B V
B V C V

 
 
 
 −
 
 

And rotation about an X-axis in reverses direction Rx1,

         1

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1

C V B V
Rx

B V C V

 
 − =
 
 
 

      Y 

       X 

     V                           U 
       L            

  Z                              A 

Fig. 10.9 Rotation about Y-axis by an Angle L

(ii) Now we will rotate about Y-axis so that it aligns on Z-axis by an angle L,
sin L = A/U
cos L = V/U
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The rotation matrix will be as follows:

Ry= 

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

L L

L L

 
 
 
 −
 
 

  = 

/ 0 / 0
0 1 0 0
/ 0 / 0

0 0 0 1

V U A U

A U V U

 
 
 
 −
 
 

and 1

/ 0 / 0
0 1 0 0
/ 0 / 0
0 0 0 1

V U A U

Ry
A U V U

− 
 
 =
 
 
 

After this the arbitrary axis aligns on the z-axis as shown in Figure 10.10.

  Y 

             X 
          U  

 Z 

Fig. 10.10 Alignment of the Arbitrary Axis on Z-axis

Step 3: Finally we rotate by an angle A about the Z-axis because we align an
arbitrary axis with the Z-axis. The rotation about Z-axis by an angle A is given by,

Rz = 

cos sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

A A
A A

 
 − 
 
 
 

Step 4: Now inverse rotation about a y and Z-axis
Step 5: Inverse translation. So the result will be as follows:

RA = T.Rx. Ry. Rz. Rx1. Ry1. T1

where Rx1, Ry1, T1 are the inverse of Rx, Ry, T matrices and RA is the rotation
about an arbitrary axis.

10.2.4 Composite Transformations

As with two-dimensional transformations, we make a composite three-dimensional
transformation by multiplying the matrix representations for the individual operations
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in the transformation sequence. This concatenation is carried out from right to left,
where the rightmost matrix is the first transformation which is applied to an object
and the leftmost matrix is the last transformation to be applied. A sequence of
basic, three-dimensional geometric transformations is combined to produce a single
composite transformation, which is then applied to the coordinate definition of an
object.

10.3 OTHER TRANSFORMATIONS

There are also some other transformations, which can be applied to a three-
dimensional object. These transformations can be given as follows:

10.3.1 Reflection

Reflection in three dimensional (3D) transformations is the reflection of a point/
object relative to a plane. The reflection about xy plane changes a right hand side
system to left hand side one.

Mxy = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 −
 
  

Mxy is the matrix of mirror reflection relative to xy-plane. Similarly we can define
the matrix relative to the yz and zx-plane as follows:

Myz = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 
 
 
 
 
  

Mzx = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 − 
 
 
  

10.3.2 Shear

Shearing can be done with respect to an axis. This transformation keeps the value
corresponding to that axis co-ordinate unchanged. The Z-axis shear is given as
follows:
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SHZ = 

1 0 0 0
0 1 0 0

1 0
0 0 0 1
a b

 
 
 
 
 
  

Parameters a and b can take any real values. The effect of this transformation
matrix is to change x and y co-ordinate values by an amount that is proportional to
the z value, while leaving the z co-ordinate unchanged. Similarly,

SHX = 

1 0
0 1 0 0
0 0 1 0
0 0 0 1

a b 
 
 
 
 
  

  and  SHy =

1 0 0 0
1 0

0 0 1 0
0 0 0 1

a b
 
 
 
 
 
  

Example 10.1: Find the scaling transformation matrix to scale by sx, sy, sz units
with respect a fixed point P(x, y, z).
Solution: Scaling with respect to a fixed point can be performed by the following
sequence:

(i) Translation
(ii) Scaling
(iii) Inverse translation

The scaling transformation matrix will be as follows:
S = T * SXYZ * T1

where T = 

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

 
 
 
 
 − − −  

T1 = 

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

 
 
 
 
 
  

   and  SXYZ  = 

0 0 0
0 0 0
0 0 0

1

X

Y

Z

s
S

s
x y z

 
 
 
 
 
  
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So we get S as,

S = 

0 0 0
0 0 0
0 0 0

(1 ) (1 ) (1 ) 1

X

Y

Z

X Y Z

s
S

s
s x S y s z

 
 
 
 
 − − −  

Example 10.2: Find the alignment transformation AN which aligns a given vector
aI + bJ + cK to the positive z-axis.
Solution: First rotate about x-axis and then rotate about y-axis.

   Y 

     (0, b, c) 
        N = aI + bJ + cK 

            V  
      b       X 
            I 
     A 
         c 

  Z 

The distances V and I are determined as follows:

V = 2 2( )b c+

I = 2 2 2( )a b c+ +

cos I = c / V
sin I = b / V

Now rotate the given vector aI + bJ + cK about x-axis by an angle I

 Rx = 

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

I I
I I

 
 
 
 −
 
  

  = 

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1

c V b V
b V c V

 
 
 
 −
 
  

Rotate vector N about y-axis by an angle J so we get vector N align of positive z-
axis as follows:

cos J = V/L
sin J = a/L



3D Geometric
Transformations

NOTES

Self-Instructional
214 Material

  Y 

             X 

        J  
  V            L  

   a 
 Z        

  Ry = 

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

J J

J J

 
 
 
 −
 
  

  = 

/ 0 / 0
0 1 0 0
/ 0 / 0

0 0 0 1

V L a L

a L V L

 
 
 
 −
 
  

We get alignment transformation AN, by multiplying Rx an Ry as following:

AN = Rx´Ry = 

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1

c V b V
b V c V

 
 
 
 −
 
  

/ 0 / 0
0 1 0 0
/ 0 / 0

0 0 0 1

V L a L

a L V L

 
 
 
 −
 
  

   = 

/ 0 / 0
/ / / 0
/ / / 0

0 0 0 1

V L a L
ba VL c V b L
ca VL b V c L

 
 − 
 − −
 
  

Check Your Progress

1. What are three transformations in 3D geometry?
2. What is reflection in 3D transformations?
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QUESTIONS

1. There are three basic transformations for three-dimensional geometry. These
are as follows:
(i) Translation (ii) Scaling (iii) Rotation

2. Reflection in three dimensional (3D) transformations is the reflection of a
point/ object relative to a plane.

10.5 SUMMARY

• The three-dimensional system has three axes: x, y and z axis. The orientation
of coordinate system is determined by two systems: the right hand system
and the left hand system.

• Rotation about the origin in two-dimensional geometry considers an angle
of rotation and a centre of rotation. But rotation in three-dimensional
geometry is more complex than in two-dimensional geometry.

• A rotation matrix for any axis that does not overlap with a coordinate axis
can be setup as a composite transformation. This involves combinations of
the coordinate axis rotations and translations in either sequence.

• Two-dimensional transformations, we make a composite three-dimensional
transformation by multiplying the matrix representations for the individual
operations in the transformation sequence.

• Reflection in three dimensional (3D) transformations is the reflection of a
point/ object relative to a plane. The reflection about xy plane changes a
right hand side system to left hand side one.

• Shearing can be done with respect to an axis. This transformation keeps the
value corresponding to that axis co-ordinate unchanged.

10.6 KEY WORDS

• Translation: It is a geometric transformation that moves every point of a
figure or a space by the same distance in a given direction.

• Reflection: In three dimensional (3D) transformations is the reflection of a
point/ object relative to a plane.
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10.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write the transformation matrix for translation in 3D geometry.
2. Write the scaling transformation matrix.
3. Discuss the rotation about an arbitrary line.

Long Answer Questions

1. Explain the rotation about x and y axis.
2. Explain the reflection and shear transformation in 3D geometry.
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UNIT 11 3D VIEWING

Structure
11.0 Introduction
11.1 Objectives
11.2 Viewing Pipeline and Coordinates
11.3 General Projection Transforms and Clipping

11.3.1 Parallel Projection
11.3.2 Isometric Projection
11.3.3 Oblique Projection
11.3.4 Perspective Projection

11.4 Answers to Check Your Progress Questions
11.5 Summary
11.6 Key Words
11.7 Self Assessment Questions and Exercises
11.8 Further Readings

11.0 INTRODUCTION

In this unit‚ you will learn about the three dimensional viewing pipeline and projection
transforms. Viewing pipeline in 3D is almost the same as the 2D viewing pipeline.
Projection results in representing the 3D objects in 2D plane. Three-dimensional
projection can be defined as any method of mapping three dimensional (3D) points
on a two-dimensional (2D) plane. The most current methods for displaying
graphical data are based on planar two-dimensional media. Therefore the use of
this type of projection is widespread, especially in engineering design, computer
graphics and drafting. There are basically two methods of projection. One method,
called perspective projection, shows the object as it appears. And the other method,
called parallel projection, shows the object to its true size and shape.

11.1 OBJECTIVES

After going through this unit, you will be able to:
• Discuss the viewing pipeline and coordinates
• Describe the general projection transform and clipping

11.2 VIEWING PIPELINE AND COORDINATES

Computer generation of a view of an object on a display device requires stage-
wise transformation operations of the object definitions in different coordinate
systems. We present here a non-mathematical introduction to each of these
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coordinate systems to help you develop an intuitive notion of their use and
relationship to one another.

Global Coordinate System, also called the World Coordinate System
is the principal frame of reference in which all other coordinate systems are defined.
This three-dimensional system is the basis for defining and locating in space all
objects in a computer graphics scene, including the observers position and line of
sight. All geomatric transformations like translation, rotation, scaling, reflection
etc. are carried out with reference to this global coordinate system.

A Local Coordinate System, or a Modeling Coordinate System is used
to define the geometry of an object independently of the global system. This is
done for the ease of defining the object-details w.r.t reference point and axes on
the object itself. Once you define the object ‘locally’, you can place it in the global
system simply by specifying the location and orientation of the origin and axes of
the local system within the global system, then mathematically transforming the
point coordinates defining the object from the local to the global system.

The Viewing Coordinate System locates objects in three-dimensional space
relative to the location of the observer. We use it to simplify the mathematics for
projecting an image of the object onto the projection plane. To establish the viewing
coordinate reference frame  first define an eyepoint PE (eye of the observer) or
view reference point. Next, specify the direction of the observer’s line of sight in
either of the two ways: as a set of direction angles (or direction cosines) in the
global system, or by specifying  the location of a viewpoint PV or look-at point.
This directed line segment from the eye point to the look-at point is also referred
to as the view-plane normal vector N or viewing axis ZV. A view plane or
projection plane is then set up perpendicular to N or ZV. The (+)ve direction of
the YV axis of the viewing coordinate system is called the view-up vector with the
view reference point being the origin of the system.

Different views of an object is obtained on the view plane either by moving the
object and keeping the eyepoint fixed or by moving the eyepoint keeping the
object fixed. However, the later technique is assumed by most of the computer
graphics application to create a new view of the object.

The two-dimensional Device Coordinate System (or Screen Coordinate
System for display monitor) locates points on the display/output of a particular
output device such as graphics monitor or plotter. These coordinates are integers
in terms of pixels, addressable points, inches, cms etc.

The Normalized Device Coordinates are used to map world coordinates in
a device independent two-dimensional pseudospace within the range 0 to 1 for each
of x and  y  before final conversion to specific device coordinates.

The modeling and world coordinate positions can be any floating-point values;
normalized coordinates (xnc, ync) satisfy the inequalities: ;10,10 ≤≤≤≤ ncnc yx  and
the device coordinates are integers within the range (0, 0) to (xmax, ymax), with
(xmax, ymax) depending on the resolution of a particular output device.
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     World
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  Modeling
Coordinates

     Device
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  Normalized
     Device
Coordinates

  Projected
Coordinates

    Modeling
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     Viewing
Transformation

   Workstation
Transformation Normalization

Projection

Fig. 11.1 Graphics coordinate system

Fig. 11.2 Three-dimensional viewing pipeline

You will frequently see the terms object space and image space. Object
space corresponds to the world coordinate system, image space to the display-
screen coordinate system. Object space is an unbounded, infinite collection of
continuous point. Image space is a finite 2D space. In 2D, we simply specify a
window in the object space and a viewport in the display surface. Conceptually,
2D objects in the object space are clipped against the window and are then
transformed to the normalized viewport and finally to the viewport for display
using standard window-to-viewport mapping.

Unlike 2D, 3D objects are conceptually clipped against a view volume and
are then projected. The contents of the projection of the view volume onto the
projection plane, i.e., the view window or projection window is then mapped to
the viewport for display. Only those objects within the view volume will appear in
the display viewport; all others are clipped from display. The shape of the view
volume varies according to the type of projection though the size is limited by
suitably choosing front plane (or near plane) and back plane (or far plane). For a
orthographic parallel projection the view volume is a rectangular parallelepiped
whereas for perspective projection the view volume is a truncated pyramid or
frustum. Refer Fig. 11.2.
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Fig. 11.3 Parallel projection   Fig. 11.4 Perspective projection

11.3 GENERAL PROJECTION TRANSFORMS AND
CLIPPING

With the help of projection, you can take a view of an object from different directions
and different distances. In this section, you will learn about the important types of
projects.

11.3.1 Parallel Projection

Parallel projection shows the true image, size and shape of an object. The angle
made by the direction of projecting lines with the projection plane or view plane is
determined. Projection rays (projectors) emanate from a COP (centre of
projection) and intersect projection plane (see Figure 11.5). The centre of
projection for parallel projectors is at infinity. The length of a line on the projection
plane is the same as the ‘true length’.

       P2′ 
 
 
 
 

           P2 

 P1 

             P2′ 

  Parallel lines 

Fig. 11.5 Illustration of Parallel Projection

There exist two different types of parallel projections in practice.  Let us
consider Figure 11.6 that illustrates the parallel projection of a point (x, y, z). The
projection plane is across the line z = 0. The values x, y represent the orthographic
projection values and the values xp, yp are the oblique projection values.
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    Y 

 (x, y, z)                                   (xp, yp) 

    α 
    Z           X 
           Φ  

                                                   (x, y) 

Projection plane 

Fig. 11.6 Illustration of Orthographic Projection

If you take note of orthographic projection, it just discards the z coordinates.
Drawings in engineering frequently use top, front and side orthographic views of
an object. The following diagram illustrates three orthographic views of an object
(see Figure 11.7).

Top View 

 

      Side View 

 Front View 

Fig. 11.7 Orthographic View of an Object

Orthographic projections that show more than one side of an object are
called axonometric orthographic projections. The most common axonometric
projection is an isometric projection where each coordinate axis is intersected by
the projection plane in the model coordinate system at an equal distance.

11.3.2 Isometric Projection

This is the projection in which projection plane intersects the x-, y-and z-axes at
equal distances and the projection plane normal makes an equal angle with the
three axes. To obtain an orthographic projection, let us assume xp = x, yp = y and
zp = 0. This projection is illustrated by Figure 11.8.
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    Z 

Fig. 11.8 Illustration of Isometric Projection

11.3.3 Oblique Projection

Y 

 (x, y, z)                                   (xp, yp) 

    α 
    Z           X 
                       Φ  

                                                   (x, y) 

    Projection plane 

Fig. 11.9 Illustration of Oblique Projection

Case (i)  If A = 45°, then tan A = 1 ⇒ L1 = 1. The projectors are defined by two
angles A and d where A = angle of line (x, y, xp, yp) with projection plane,
d = angle of line ),,,( pp yxyx  with x-axis in projection plane and L = Length of

Line ),,,( pp yxyx , then:

cos d =  (xp – x)/L ⇒ xp = x + L cos d,

sin d = Lyy p /)( −  ⇒ yp = y + L sin d, LzA /tan =

Thus,
L1 = L/z ⇒ L = L1z,
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xp = x + z(L1cos d), and

yp = y + z(L1sin d) 
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Now, if the angle A = 90° (that is, the projection line is perpendicular to the
projection Plane), then tan A = ∞ ⇒ L1 = 0, thus giving an orthographic projection.
There are two special cases of oblique projection (perpendicular to the projection
plane) that are projected with no change in length (refer to Figure 11.10).

 

L1 = L2 
 
 
  
L1 
           L2                          45°     30° 
 

Fig. 11.10 Two Cubes Cavalier Projection

Case (ii) If tan A = 2, then A = 63.40° and L1 = 2
1

. The lines that are perpendicular

to the projection plane are projected at 2
1

 length. This is also called a cabinet

projection.
L1 = ½ L2

 
           L1 

           L2  
                         

Fig. 1.11 Illustration of Cabinet Projection

11.3.4 Perspective Projection

A perspective projection can be viewed as the projection that has a centre of
projection at a finite distance from the plane of projection. The perspective
projection is shown in Figure 11.12:
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  Projectors 

             Centre of Projection

 L1               L2  

Fig.5.49 Illustration of Perspective projection 
Fig. 11.12 Illustration of Perspective Projection

The distance of a line from the projection plane determines its size on the
projection plane, which means the further the line from the projection plane, the
smaller its image on the projection plane. As seen in Figure 11.12, there is the
projection of L1 = L2 but the actual length of L1 is not equal to L2. The perspective
projection is more practical because the distant objects appear smaller.

Computing the Perspective Projection
           Y 
  P (x, y, z) 
           X 

              (xp, yp) 
 Z 

      d 

Fig. 11.13 Perspective Projection from y-axis

From Figure 11.13, you have,

         X 

          P   

      
             Z    xp    COP 
      z                    d 

     PP 

Fig. 11.14 Perspective Projection
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x/(z + d) = 
d
xp

xp = ][
dz

dx
+

 and

xp = x/(z/d + 1)
The same calculation is done for y (look down the x-axis) to get yp = y/(z/d

+ 1), zp = 0. You can represent this in matrix form by using homogeneous coordinates
as follows:
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where,  xh = x, yh= y, zh = 0, w = (z/d) + 1

Thus, the points on the projection plane are ]1[]1[
w
zh

w
yh

w
xhzpypxp = .

This leads to the same xp, yp as before. The major problem with perspective
transformation is that it does not safeguard straight lines or planes; that is, straight
lines cannot be transformed into straight lines. Let us look at an example of a
three-dimensional line in object space from:

P1 (x1 = 2, y1 = 5, z1 = 6) to P2 (x2 = 8, y2 = 7, z2 = 12)
In parametric form, this line is represented as:
x(t) = 2 + 6 × ty(t) = 5 + 2 × tz(t) = 6 + 6 × t
Let us apply an arbitrary value of t (for example, t = 0.40) and compute the

x, y, z values:
x = 2 + 2 × 0.40 = 4.40y = 5 + 2 × 0.40 = 5.80, so Pi (t = 0.40) = (4.40,

5.80, 8.40) z = 6 + 6 × 0.40 = 8.40
Let us now perform the perspective transformation (assume d = 10.0) for

P1, Pi, P2. Thus, you get:
P1(x = 1.25, y = 3.125, z = 6.0),
Pi (x = 2.39, y = 3.15, z = 8.4) and P2(x = 3.64, y = 3.18, z = 12.0)
If this is still a straight line, then all three coordinates of point Pi must have

the same value of the parameter t. So for x you get,
2.39 = 1.25 + t × (2.39) ⇒ t = 0.48
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For y, you get 3.15 = 3.12 + t × (0.57) ⇒ t = 0.48
For z, you get t = 0.40 which is unchanged, therefore, the points are not

collinear. For maintaining linearity, a perspective depth transformation can be done
as:

Zp = Z / (D + Z)
Then, for point 1,

Zp = 6 / (10 + 6) = 0.375
For point 2,

Zp = 12 / (10 + 12) = 0.545For point i
Zp = 8.4 / (10 + 8.4) = 0.457

Now check with t value for point i,
0.457 = 0.375 + t * (0.170) = 0.48

This is the same value of t that you calculated for point i, x and y. Therefore,
points 1, 2 and i are still collinear after applying perspective depth transformation.

The point to be noted is that the relative z depth values remain unchanged,
that means if Z2 > Z1

, then there exists a relation Z2 / (Z2 + d) >Z1 / (Z1 + d) as
follows:

Z2 > Z1Z2 × d > Z1 × d (by multiplying both the sides by d)
(Z1 × Z2 + Z2 × d) > (Z1 × Z2 + Z1 × d)  (by adding Z1 × Z2 to both sides)
Z2 × (Z1 + d) > Z1 × (Z2 + d)Z2 /(Z2 + d)> Z1 /(Z1 + d)
For Zp = Z / (Z + d) ⇒ 0 if d is greater than Z and ⇒ 1.0 if Z is greater

than d. Therefore,
0.0 ⇐ Zp ⇐1.0
Thus, to maintain linearity, you have to transform Z as well as X and Y.

Check Your Progress

1. What is global coordinate system?
2. What is axonometric orthographic projection?

11.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Global Coordinate System, also called the World Coordinate System is the
principal frame of reference in which all other coordinate systems are defined.

2. Orthographic projections that show more than one side of an object are
called axonometric orthographic projections.
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11.5 SUMMARY

• The Viewing Coordinate System locates objects in three-dimensional space
relative to the location of the observer. To establish the viewing coordinate
reference frame first define an eyepoint or view reference point.

• A Local Coordinate System, or a Modeling Coordinate System is used to
define the geometry of an object independently of the global system.

• Global Coordinate System, also called the World Coordinate System is the
principal frame of reference in which all other coordinate systems are defined.

• The Normalized Device Coordinates are used to map world coordinates in
a device independent two-dimensional pseudo space within the range 0 to
1 for each of x and y before final conversion to specific device coordinates.

• Parallel projection shows the true image, size and shape of an object. The
angle made by the direction of projecting lines with the projection plane or
view plane is determined.

• A perspective projection can be viewed as the projection that has a centre
of projection at a finite distance from the plane of projection.

• Orthographic projections that show more than one side of an object are
called axonometric orthographic projections.

11.6 KEY WORDS

• Local Coordinate System: It is used to define the geometry of an object
independently of the global system.

• Projection: It means the transformation of a three-dimensional (3D) area
into a two-dimensional (2D) area. 

• Isometric Projection: It refers to the projection in which the projection
plane is allowed to intersect the x, y and z axes at equal distances and the
plane normal to the projection has equal angles with these three axes.

11.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the coordinate system in viewing pipeline.
2. What do you understand by viewing pipeline?

Long Answer Questions

1. Explain the parallel and isometric projection.
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2. What is oblique and perspective projection? Explain.
3. Prove that the perspective projection of a line segment is equal to the line

segment between the perspective projection of endpoints.
4. Find the transformation matrix for oblique projection onto xy-plane.
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VISIBLE SURFACE DETECTION
METHODS AND ANIMATION

UNIT 12 CLASSIFICATION

Structure
12.0 Introduction
12.1 Objectives
12.2 Back-Face Detection
12.3 Z-Buffer Method (Depth-Buffer Method)
12.4 Scan-Line Method
12.5 Depth-Sorting Method
12.6 BSP-Tree Method
12.7 Area Sub-Division
12.8 Octree Method
12.9 Answers to Check Your Progress Questions

12.10 Summary
12.11 Key Words
12.12 Self Assessment Questions and Exercises
12.13 Further Readings

12.0 INTRODUCTION

A major consideration in the generation of realistic graphics display is identifying
those parts of a scene that are visible from a chosen viewing position. There are
many approaches that we can take to solve this problem and numerous algorithms
have been derived for efficient identification of visible objects of different types of
applications. Some methods require memory, some involve more processing time,
and some apply only to special types of objects. Deciding upon a method for a
particular application can depend on such factors as a complexity of the scene,
types of objects to be displayed, available equipment, and whether static or animated
displays are to be generated. The various algorithms are referred to as visible-
surface detection methods or sometimes called hidden-surface elimination methods;
although there can be a subtle difference between identifying visible surfaces and
eliminating hidden surfaces.

12.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the general principles of hidden lines and surfaces
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• Explain the Z-buffer method and the scan-line method
• Analyse the depth-sorting method
• Familiarize yourself with the Octree Method

12.2 BACK-FACE DETECTION

It is an object space method which compares objects and parts of objects to find
the visible surfaces. It is also known as plane equation method. Consider an
example of a triangular surface whose visibility needs to be decided. The idea
behind is to check whether the triangle is facing away from the viewer or not. If it
is like that then discard it from the current frame and move to the next. The surface
has the normal vector. When the normal vector is in the direction of center of
projection, it means a front face and viewer can see it and vice versa.

12.3 Z-BUFFER METHOD (DEPTH-BUFFER
METHOD)

The z-buffer or depth buffer is the simplest of the visible surface or hidden surface
algorithms and is an image space algorithm. The z-buffer is a simple extension of
the frame buffer idea. A frame buffer is used to store the attributes of each pixel in
the image space. The z-buffer is a separate depth buffer used to store the z-
coordinates, or depth of every visible pixel in the image space. In use, the depth or
z-value of a new pixel to be written to the frame buffer is compared to the depth of
that pixel stored in the z-buffer. If the comparison indicates that the new pixel is in
front of the pixel stored in the frame buffer, then the new pixel is written to the
frame buffer and the z-buffer updated with new z-value. If not, no action is taken.
Conceptually, the algorithm is a search over x, y for the largest value of z(x, y).
This algorithm is frequently implemented for polygonally represented scenes and
also applicable for any object for which depth and shading characteristics can be
calculated. Scenes can contain mixed object types and may be of any complexity.

The algorithm

Step 1: Set the frame buffer to the background intensity or colour.
Step 2: Set the z-buffer to the minimum z-value.
Step 3: Scan converts each polygon in arbitrary order.
Step 4: For each pixel (x, y) in the polygon, calculate the depth z(x, y) at that
pixel.
Step 5: Compare the depth z(x, y) with the value stored in the z-buffer at that
location
Step 6: if z(x, y) > z-buffer(x, y), then write the polygon attributes to the frame
buffer and replace z-buffer (x, y) with z(x, y), otherwise no action is taken.
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12.4 SCAN-LINE METHOD

Scan-line visible surface and visible line algorithms are extensions of scan polygon
techniques. Scan-line algorithms reduce the visible line/ visible surface problem
from three dimensions to two. A scan plane is defined by the viewpoint at infinity
on the positive z-axis and a scan-line, as shown in Figure 12.1.

      X 

       Scan plane 

 

Fig. 12.1 Illustration of a Scan Plane

The intersection of the scan plane and the three-dimensional scene defines a one-
scan-line-high window. Figure 12.2 shows the intersection of the plane with
polygons. The figure points that the visible surface problem is reduced to deciding
which line segment is visible for each point on the scan-line. At first glance it might
appear that the ordered edge list algorithm is directly applicable. However Figure
12.2 shows that this gives incorrect results. For example, for the scan-line shown
in Figure 12.1, there are four active edges on the active edge list. The intersections
of these edges with the scan-line are shown by the small dots Figure 12.2. Extracting
the intersections in pairs activates the pixels between 1 and 2 and between
3 and 4.

   Y 

        

       
       X 

   Z 

Fig. 12.2 Another Illustration of Scan Plane



Classification

NOTES

Self-Instructional
232 Material

The pixels between 2 and 3 are not activated. The result is incorrect. A ‘hole’ is
left on the scan-line, where it intersects two polygons.

12.5 DEPTH-SORTING METHOD

By using the image-space and object-space operations, the depth-sorting method
performs the following basic functions:

(i) Surfaces are sorted in order of decreasing depth
(ii) Surfaces are scan converted in order, from starting with the surface of

greatest depth
Sorting operations are taken in both image and object space, and the scan
conversion of the polygon surfaces is only performed in the image space. This
method for solving the hidden-surface problem is often called the ‘painter’s
algorithm.’ In this method first we sort the surfaces according to their distance
from the view plane. The intensity values for the outermost surface are then entered
into the refresh buffer. Taking each succeeding surface in turn, the surface can be
painted with intensities on to the frame buffer over the intensities of the previously
processed surfaces.

According to the depth-sorting method, painting polygon surfaces onto the
frame buffer is carried out in several steps. Suppose we are viewing along the z
direction, surfaces are ordered on the first path according to the largest z value on
each surface. Surface S with the greatest depth is then compared to the other
surfaces in the list to determine whether there are any overlaps in depth. If no
depth overlaps occur, then S is scan converted. Figure 12.3 demonstrates the two
surfaces that overlap in the xy plane but they do not have depth overlap.

          Zmax 
  S 

            Zmin 

         Z′max 
      S′ 
       Z′min 

Fig. 12.3 Two Surfaces having no Depth Overlap

This process is then repeated for the next surface in the list. As long as no overlap
is found, each surface is processed in depth order until all have been scan converted.
If a depth overlap is found at any point in the list, then we need to make some
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reordered. We make the following tests for each surface that overlaps with S. If
any one of these tests is true, no reordering is necessary for that surface. The tests
are listed in order of increasing difficulty.

(i) For two surfaces bounding rectangles in the xy-plane do not overlap.
(ii) Relative to the viewing position surface S is completely behind the overlapping

surface.
(iii) Relative to the viewing position the overlapping surface is completely in

front of S.
(iv) The projections of the two surfaces on to the view plane do not overlap.

We perform these tests in the order listed and proceed to the next overlapping
surface as soon as we find one of the tests is true. If all the overlapping surfaces
pass at least one of these tests, then none of them is behind S. No rendering is then
necessary and then S is scan converted. The first test is performed in two parts.
First we check for overlaps in the x-direction, and after this we check for overlaps
in the y-direction. If either of these directions represents no overlapping, the two
planes can not obscure one another. An example of the two surfaces which overlap
in z-direction but not in x-direction is represented in Figure 12.4.

  S                     S′ 
     X 
         Z       Xmin        Xmax      X′min    X′max      

 Fig. 12.4 Two Surfaces having Depth Overlap but no Overlap in x-direction

With an ‘inside-outside’ polygon test we can perform tests 2 and 3, i.e., we
substitute the coordinates for all vertices of S into the plane equation for the
overlapping surface and check the sign of the result. If the plane equation are set
up so that the outside of the surface is toward the viewing position, then S is
behind S’ if all the vertices of S are inside S’.
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        S 
   S′ 

      X 

         Z 

Fig. 12.5 Surface S is Computed behind the Overlapped Surface S′

If all vertices of S are outside S′, then S′ is completely in front of S. Figure 12.6
shows an overlapping surface S′ which is completely in front of S, but surface S is
not completely inside S′ (test 2 is failed).

        S  

  S′   
        X 

 Z 

Fig. 12.6 The Overlapping Surface S′ is Completely Outside of Surface S

If tests 1 to 3 have all failed, then we try test 4, in which we check for the
intersections between the bounding edges of the two surfaces using line equations
in the xy plane. As shown in the following figure the two surfaces can or can not
intersect although their coordinate extents overlap in the x, y and z directions.

Fig. 12.7 Two Surfaces having Overlapping Bounding Rectangles in xy-plane

Should all four tests fail with a particular overlapping surface S′, we interchange
surfaces S and S′ in the sorted list. Figure 12.8 shows the example of two surfaces
that would be reordered with this procedure.
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       S′  
   S 

     X 

     Z 

Fig. 12.8 Surface S with more Depth but Obscure Surface S′

At this point we still do not know for certain that we have found the farthest
surface from the view plane. Figure 12.9 shows a situation in which we would first
interchange S and S′.

 S 
       S′′         S′   
 

     X 

     Z 

Fig. 12.9 Three Surfaces Entered into Sorted List (S, S′, S′′) of Surfaces

But since S′′ obscures a part of S′, we need to interchange S′′ and S′ so that we
can get the three surfaces into the correct depth order. So we need to repeat the
testing process for each surface that is reordered in the list.

12.6 BSP-TREE METHOD

The Binary Space Partitioning Tree method is very effective in determining vis-
ibility relationship among a static group of 3D polygons as seen from an arbi-
trary viewpoint.

Following is the procedure to build a BSP Tree in the object space.

I. Select a polygon (arbitrary) as the root of the tree i.e. the 1st partition
plane.

II. Partition the object space into two half-spaces (inside & outside of the
partition plane determined by the normal to the plane); some object poly-
gons lie in the rear half while the others in the front half w.r.t the partition
plane.

III.If a polygon is intersected by the partition plane, split it into two polygons
so that they belong to different half-spaces.
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IV. Select one polygon in the root’s front as the left node or child and another
in the root’s back as the right node or child.

V. Recursively subdivide spaces considering the plane of the children’s as
partition planes until a subspace contains a single polygon.

Thus we see that BSP tree’s internal nodes are the partitioning planes (poly-
gon objects) with left nodes representing front objects and right nodes the back
objects. The leaves represent regions in space.

P4
b

a

P2

P1

P3

P5

P1

P3

P –a4

P2

P5P –b4

Front Back

Front BackFront

BSP-Tree

Fig. 12.10  Binary space partitioning and formation of BSP-Tree

When the BSP Tree is complete, following the principle of Painter’s algorithm
the tree is processed by selecting surfaces for display in back-to-front order. If the
viewer is in the root polygons front half space, then the algorithm first displays all
polygons in the roots rear half space (that too in back-to-front order recursively at
each node) then the root itself and finally all polygons in its front half space
(in back-to-front order recursively for each node).

P5 P – b4 

Root
polygon

Rear half polygons Front half polygons

P2 P1 P3 P – a4 

Fig. 12.11  Order of processing polygons in the BSP Tree as shown in Fig.6.9

12.7 AREA SUB-DIVISION

This method works in image space as it is concerned with what is displayed on the
screen. It considers a window in image space and seeks to determine if the window
is empty or if the content of the window is projection of a single visible surface. If
not, the window is subdivided into smaller and smaller rectangles or sub-windows
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window size is at the limit of the display resolution (i.e., a pixel with a single intensity
or color).

Starting with the full display screen as the initial window area, the algorithm
divides an area at each stage into four smaller areas (sub-windows), thereby
generating a quad tree.

This process basically exploits area coherence or the fact that adjacent areas
(pixels) in both the x and y directions tend to be similar. As a result sufficiently
small areas of an image will be contained in atmost a single visible polygon.

 

Fig. 12.12
In particular, a polygon P w.r.t a given window area A is

1. Disjoint if P is totally outside A
2. Contained if P is totally inside A
3. Intersecting if P intersects A
4. Surrounding if P completely contains A

 

                            Disjoint Polygon     Contained Polygon

 

            Intersecting Polygon                                                Surrounding Polygon

Fig. 12.13
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While trying to find the potentially visible polygons (PVP) w.r.t. a given window
area disjoint polygons and the part of an intersecting polygon that is outside the
area are ignored as being invisible. Only the contained polygons, portion of the
intersecting polygons inside the area and surrounding polygons are potentially
visible.

The basic steps of the algorithm can be sequentially listed as following:
Step 1: Initialize the window area to be the whole screen.
Step 2: Create a potentially visible polygons list (PVPL) with the PVPs sorted on
zmin. Place the PVPs in their appropriate categories. Remove polygons hidden by
a surrounding polygon and remove disjoint polygons.

Step 3:
(i) If all polygons are disjoint to the area, set all the pixels to the background

color.
(ii) If PVPL has only a single polygon classified as contained, then fill the

area of the window outside the polygon with the background color; fill
the contained polygon with appropriate color.

(iii) If the PVPL has only one polygon which is a surrounding one then fill the
area with the appropriate color of the surrounding polygon. (The case is
same if there is a surrounding polygon which hides all polygons in the
PVPL).

(iv) If the PVPL has only one polygon, which is an intersecting polygon, then
fill the area of the window outside the polygon with background color, fill
the portion of the intersecting polygon within the window area with
appropriate color.

(v) If the area is a pixel at (x, y) and neither of the above cases applies
compute the z co-ordinate z (x, y) at (x, y) of all polygons in the PVPL.
Set the pixel at (x, y) to the color of the polygon with the smallest z co-
ordinate.

Step 4: If none of the five cases in step 3 applies then subdivide the area into
fourths. For each subdivided area go to step 2.
For rectangular windows, bounding box or minimax tests can be used to
determine whether a polygon is disjoint w.r.t a window. If xL, xR, yB, yT define the
four edges of a window and xmin, xmax, ymin, ymax, the edges of the bounding box
of a polygon, then the polygon is disjoint if

xmin > xR  or  xmax < xL   or  ymin > yT  or  ymax < yB

The polygon is contained within the window if the bounding box is contained
within the window, i.e.

xmin ³ xL and xmax £ xR and ymin ³ yB and ymax £ yT
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Fig. 12.14

If simple substitution test can be used to identify an intersecting polygon. The
coordinates of the window vertices are substituted into a test function say, f = y –
m x – c where the equation of the line defining a polygon edge is y = m x + c. If the
sign of the test function is the same for each window vertex, then all the vertices lie
on the same side of the polygon edge and so there is no intersection. If the signs
do not match then the edge intersects the window. If none of the polygon edge
intersects the window, the polygon is either disjoint or surrounds the window.

There are cases of typical disjoint and surrounding polygons which are not
trapped by the above mentioned tests. More complex tests like infinite line test
and angle continuing test are required. It is, however, not necessary to identify
either contained or intersecting polygons. Area subdivision will eventually make
contained or intersecting polygons either disjoint or surrounding polygons. Any
remaining conflicts are resolved at the pixel level.

12.8 OCTREE METHOD

Octrees are three dimensional analogs of quad-trees. When an octree is used for
the viewing volume, hidden-surface elimination is achieved by projecting octree
nodes onto the viewing surface in a front-to back order as shown in Figure 12.15.
Front face of a region of space is formed with octants 0, 1, 2 and 3. Surfaces in
front of these octants are visible to the viewer. Any surface towards the rear of the
front octants or in the back octants (4, 5, 6 and 7) may be hidden by the front
surface.

Back surfaces are eliminated, for the viewing direction given in Figure 12.14
by processing data elements in octree nodes in the order 0, 1, 2, 3, 4, 5, 6, 7. This
results in a depth–first traversal of the octree, so that the nodes representing octants
0, 1, 2, and 3 for the entire region are visited before the nodes representing octants
4, 5, 6 and 7. Similarly the nodes for the front four sub-octants of octants 0 are
visited before the nodes for the form back sub-octants. The traversal of the octree
continues in this order for each octant subdivision. If a colour value is considered
in octree nodes, the pixel area in the frame buffer corresponding to this node is
assigned that colour value only if no value has previously been stored in this area.
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In this way, only the front colours are loaded into the frame buffer. Nothing is
loaded if an area is void. Any node that is found to be completely obscured is
eliminated from further processing, so that its sub-trees are not accessed. Different
views of objects represented as octrees can be obtained by applying transformations
to the octree representation that reorient the object according to the view selected.
We assume that the octree representation is always setup so that octants 0, 1, 2,
and 3 of a region form the front face.

  5 
      6 

  4          1 

          0  
    
          2  

        7           3 

      Viewing direction 

Fig. 12.15 The Numbered Octants of a Region

An octree first maps itself onto a quad-tree of visible areas by traversing octree
nodes from front to back in a recursive procedure. Then the quad-tree
representation for the visible surface is loaded into the frame buffer. Figure 12.16
depicts the octants in a region of space and the corresponding quadrants on the
view plane.
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          2  

        7           3 

Fig. 12.16 Octants Division for a Region of Space and the Corresponding Quadrant
Planes

Contribution to quadrant 0 comes from octants 0 and 4. Colour values in quadrant
1are obtained from the surfaces in octants 1 and 5, and the values in each of the
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Classificationother two quadrants are generated from the pair of octants aligned with each of
these quadrants.

Check Your Progress

1. What is the role of scan-line algorithms?
2. What are the basic functions performed by the depth-sorting method?
3. What is the significance of BSP tree method?
4. What are octrees?

12.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Scan-line algorithms reduce the visible line/ visible surface problem from
three dimensions to two.

2. The depth-sorting method performs the following basic functions:
(i) Surfaces are sorted in order of decreasing depth
(ii) Surfaces are scan converted in order, starting with the surface of

greatest depth.
3. The Binary Space Partitioning Tree method is very effective in determining

visibility relationship among a static group of 3D polygons as seen from an
arbitrary viewpoint.

4. Octrees are three dimensional analogs of quad-trees.

12.5 SUMMARY

• Back-Face detection, also known as Plane Equation method, is an
object space method in which objects and parts of objects are compared
to find out the visible surfaces.

• The z-buffer or depth buffer is the simplest of the visible surface or hidden
surface algorithms and is an image space algorithm. The z-buffer is a simple
extension of the frame buffer idea.

• Scan-line visible surface and visible line algorithms are extensions of scan
polygon techniques. Scan-line algorithms reduce the visible line/ visible
surface problem from three dimensions to two.

• Sorting operations are taken in both image and object space, and the scan
conversion of the polygon surfaces is only performed in the image space.

• The Binary Space Partitioning Tree1 method is very effective in determining
visibility relationship among a static group of 3D polygons as seen from an
arbitrary viewpoint.
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• Octrees are three dimensional analogs of quad-trees. When an octree is
used for the viewing volume, hidden-surface elimination is achieved by
projecting octree nodes onto the viewing surface in a front-to back order.

12.6 KEY WORDS

• Depth Field: It is a field in the A-Buffer method which it stores a positive
or negative real number.

• Intensity Field: It is a field in the A-Buffer method which stores surface-
intensityinformation or a pointer value.

• Octrees: These are three dimensional analogs of quad-trees.

12.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Explain the depth-buffer method for hidden surface detection.
2. Explain the scan-line method for back-face removal.
3. Explain Painter’s algorithm with a suitable example.
4. What are the basic disadvantages of the Z-buffer method?

Long Answer Questions

1. Explain the depth-sorting method with a suitable example.
2. What is the difference between Painter’s Algorithm and Scan-line Algorithm?
3. Explain the quad tree and the Octree with a suitable diagram.
4. Write the hidden line methods in detail.
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13.0 INTRODUCTION

In this unit, you will learn about computer animation. Computer animation is theprocess
used for generating animated images by using computer graphics. The termcomputer
generated imagery includes both static scenes and dynamic images whilethe term
computer animation is used only for moving images. Nowadays computeranimation
typically uses 3-D computer graphics, even though 2-D computer graphicsare still
used for specific styles, low bandwidth and faster real time renderings. It canbe
used for creating animation using the computer and also for another medium, suchas
film. Fundamentally, computer animation is a digital successor to the stop
motiontechniques used in traditional animation with 3-D models and frame-by-frame
animation of 2-D illustrations. Computer generated animations are easily
controllablethan any other physical/manual processes. To create the illusion of
movement, animage is displayed on the computer screen and repeatedly replaced
by a new imagethat is similar to it but advanced slightly in time generally at a rate of
24 or 30 frames/second and is similar to the technique used in television and motion
pictures.

13.1 OBJECTIVES

After going through this unit, you will be able to:
• Explain design of animation sequences
• Describe general animation functions in a computer
• Discuss raster animations
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13.2 DESIGN OF ANIMATION SEQUENCES

Literally speaking, to animate is to bring to life, i.e., to put something into action.
Animation makes graphics more realistic by imparting motion and dimension to an
inanimate object. Intuitively though we think of animation synonymous with motion,
technically speaking, it covers all changes that have a visual effect. Thus it may include
time varying position (motion dynamics), shape, size, color, texture (update dynamics)
of an object and also changes in lighting, camera position, focus, etc. Animation is
referred as the speedy exhibit of a sequence of 2-D or 3-D metaphors of model
locations to create an illusion of movement. The consequence is an optical illusion of
motion because of the phenomenon of doggedness of vision. It can be produced
and demonstrated in numerous ways. Animation adds to graphics the dimensions of
time, which tremendously increase the potential of transmitting the desired information.
In order to animate an object, the animator should specify directly or indirectly how
the object has to move through time and space. The most common method of
presenting animation is as a motion picture or video program, although there are
other methods also.

With advancement in computer aided techniques, today animation is
extensively used in Entertainment (games and movies), Educational and Training
presentations, Advertising, Internet and Process simulation. Process simulation
through animation is very useful in visualization of functioning and stages of
operations of industrial products (like a gear or motor) or gradual transformations
in a complex process, such as changing atomic structures in a chemical reaction or
distortion of structures under dynamic forces.

Computer animation includes assortment of techniques, the unifying factor
being that the 2-D and 3-D animations are created digitally on a computer. This
animation takes less time than previous traditional animation methodology. 2-D
animation figures are created and/or edited on the computer using 2-D bitmap
graphics or created and edited using 2-D vector graphics. 3-D animation is digitally
modeled and manipulated by an animator. 2-D animation techniques tend to focus
on image manipulation while 3-D techniques usually build virtual worlds in which
characters and objects move and interact. Basically, 3-D animation can create
images that seem real to the viewer.

Traditional animation also called cel animation or hand-drawn animation
was the process used for most animated films of the 20th century. To create the
illusion of movement, each drawing differs slightly from the one before it. The
animators’ drawings were traced or photocopied onto transparent acetate sheets
called cels, which were filled in with paints in assigned colors or tones on the side
opposite the line drawings. The completed character cels were then photographed
one-by-one onto motion picture film against a painted background by a rostrum
camera. Today, animators’ drawings and the backgrounds are either scanned into
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Computer Animationor drawn directly into a computer system. Various software programs are used to
color the drawings and simulate camera movement and effects.

A computer animation sequence can be set by specifying the storyboard,
the object definitions and the image frames. The storyboard is an outline of action.
It could consist of rough sketches of motion sequence or it could be a list of basic
events that are to take place. Object definitions are given for each participating
object in terms of their shape and movement. The still image frames are either
drawn manually or is computer generated to simulate motion sequence of animating
objects. The illusion of movement is created by playing 15-20 numbers of such
still images frames with small changes made to each one per second. The eyes
retain an image for sometime and to allows the brain to connect the frames in an
uninterrupted sequence. An object observed by the human eye remains mapped
on the eyes retina for a short time say about 1/20th of a second and is known as
the persistence of viewing.  Animation basically exploits these biological
phenomena where a series of images are changed very slightly but very rapidly,
one after the other, to seemingly blend together into a visual illusion of movement.
In traditional animation, as many as 30 FPS (Rames Per Second) might be used
to give a smoother appearance at high speeds.

Cel Animation

Classically, picture frames depicting animated sequence were drawn manually.
For this the onionskin technique which is popularly known as cel animation
technique is mostly adopted. By drawing on a onionskin-like translucent paper
called ‘cel’, with a light source beneath the drawing surface, an animator can see
the position of an object on one page, while drawing it in a new position on the
page above. Only the moving elements on the cel are redrawn for each frame
while the fixed part (usually the background) is only made once.

This concept of cel has been implemented in the digital media in the form of
layer. Many animation software applications offer translucent drawing layers. In
some of the software, such as Macromedia Flash the layers are shown progressively
more opaque, to assist in identifying the stacking order of the layers. The image
frames of an animated sequence can be made by combining a background layer,
which remains static, with one or more animation layers, in which any changes that
take place between frames are made. To take a simple example, suppose we wish
to animate the sailing of a boat across the river. The first frame could consist of a
background layer containing the river field and a foreground layer with an image of
the boat. To create the next frame, these two layers are copied in the frame and
then using the move tool, displace only the image of the boat up to a small distance.
By continuing in this way, sequence depicting the smooth movement of the boat
across the background can be produced.
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A

B

Here you see the
Macromedia Flash time
line. You can see layers of
objects stacked up for
display as a single image.
The numbered columns
each represent a frame,
with time marching on
from left to right.

In this animation, as the
bird flies from A to B, two
intermediate frames are
displayed with onion skin
effect. Thus all the in-
betweens can be displayed
in onion skin mode and
can be edited on frame by
frame basis if required.

Fig. 13.1 Cel Animation

The form of animation based on objects movement only (no change of
other properties) is called sprite animation. The moving objects are referred to
as sprites. Instead of storing changes of sprite position from frame to frame the
change values can also be generated by computer programs.

13.3 GENERAL COMPUTER ANIMATION
FUNCTIONS

Animation packages provide special functions for designing the animation and
processing the individual objects. Several well-suited steps are defined in the
animation packages which can be used in the development of animation sequences
in a computer system. These include object manipulation, rendering camera motions
and the generation of in-betweens. One important function in animation packages
is to store and manage the object database. Different object shapes and associated
parameters are specifically stored and updated in the database. Additional object
functions enhance motion generation and object rendering methods. Motion can
be generated as per the specified constraints with the help of 2-D or 3-D
transformations. Standard motions are zooming, panning and tilting. Another typical
function simulates camera movements. Standard functions are applied to identify
visible surfaces using the rendering algorithms. Finally, the given specification for
the keyframes and the in-betweens can be automatically generated. A sequence
of static images presented in a quick succession appears as continuous flow.

In simple terms, any type of moving image that can be produced through
the personal computer is referred as 3-D computer animation, a method to generate
the optical illusion of a range of movements. It is typically termed as Computer
Generated Imagery or CGI and uses 3-D animation software.
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13.4 RASTER ANIMATIONS

There are two main types of computer animation, vector based and raster based.
Vector animation is based on simple geometric shapes, while raster animation is
created using more detailed images similar to photos or paintings. Raster animation
is the most common animation technique. The frames are copied very fast from
off-screen memory to the frame buffer. Copying can be applied to complete frames
or only parts of the frame which contain some movement. In raster animation
procedure, a part of the frame in the frame buffer needs to be erased while the
static part of the frame is re-projected as a whole and the animated part is over
projected.

Raster based animation frames (and all the related raster images) are made
up of individual pixels. Each of these pixels contain information about the color
and brightness of that particular spot on the image. This is somewhat similar to the
concept of pointillism in painting, with the sum of the points making up the totality
of the picture or frame. Raster animation is used for depicting realistic representations
of people, animals or places, rather than the more stylized, anime-style animation
you might get with vector graphics. Raster animation is also used to create animation
for logos and banners which are based on photos or drawings.

One of the problems associated with the creation of raster based animations
on a computer is the enormous amount of computer power that is consumed while
creating them. A major difficulty with working with raster based animations or
images is that they are not infinitely enlargeable, for example if you want to create
a raster based animation at a certain size, say 400 × 300, it is not possible to
enlarge it to any significant extent without any loss of resolution in the image. Raster
animation starts with raster images, moving them on the screen as blocks of pixels.
If the computer needs to enlarge an image, it blows it up by simple magnification.
Figure 13.2 displays the raster views and spatial entities for selected cels used in
animation.

 

Fig. 13.2 Raster Views and Spatial Entities
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Raster animation is used for depicting realistic representations of people,
animals or places. This animation is also used to create animation for logos and
banners based on photos or drawings. Raster based animation frames are made
up of individual pixels. Each pixel contains information about the color and
brightness of that particular spot on the image.

Advantages of Raster Animation

Raster animation provides the animator control over the appearance of an image.
Raster animation also uses less system memory. Following are considered as
advantages of raster animation:

• Compression: Adobe or Macromedia Flash provides an easy way to
change the file’s compression by right clicking the ‘raster file’ and selecting
specific Properties.

• Easier on the CPU:  Compared to vector animation, raster animation
takes less Central Processing Unit or CPU time.

• Smooth: At the expense of CPU time, you can use ‘Smoothing’ operation
on raster animation files that can be resized.

• Faster Effects: When filters are applied, a raster graphic will perform
faster than a vector graphic.

Check Your Progress

1. What is sprite animation?
2. What are the two main types of computer animation?

13.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The form of animation based on objects movement only (no change of
other properties) is called sprite animation.

2. There are two main types of computer animation, vector based and raster
based.

13.6 SUMMARY

• Animation makes graphics more realistic by imparting motion and dimension
to an inanimate object. Intuitively though we think of animation synonymous
with motion, technically speaking, it covers all changes that have a visual
effect.
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Computer Animation• Classically, picture frames depicting animated sequence were drawn
manually. For this the onionskin technique which is popularly known as cel
animation technique is mostly adopted.

• The form of animation based on objects movement only (no change of
other properties) is called sprite animation.

• Animation packages provide special functions for designing the animation
and processing the individual objects. Several well-suited steps are defined
in the animation packages which can be used in the development of animation
sequences in a computer system.

• Vector animation is based on simple geometric shapes, while raster animation
is created using more detailed images similar to photos or paintings.

• Raster based animation frames (and all the related raster images) are made
up of individual pixels. Each of these pixels contain information about the
color and brightness of that particular spot on the image.

• Raster animation provides the animator control over the appearance of an
image. Raster animation also uses less system memory.

13.7 KEY WORDS

• Storyboard: It is an outline of action and consists of rough sketches of
motion sequence or it could be a list of basic events that are to take place

• Raster Animation: It is the most common animation technique in which
the frames are copied very fast from off-screen memory to the frame buffer.

13.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is animation?
2. Define the significance of cel in traditional animation.
3. What are general computer animation functions?
4. What is the significance of raster animation?

Long Answer Questions

1. Explain the steps in the designing of an animation sequence?
2. Explain general computer animation functions with reference to computer

graphics.
3. Explain raster animation techniques with reference to computer graphics.
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14.0 INTRODUCTION

In this unit‚ you will learn about the animation languages‚ key frame systems and
motion specifications. Computer animation languages are used to program animation
functions which comprises of a graphics editor, key frame generator, in between
generator and standard graphics routines. Keyframes are image frames which
depict the key positions of the objects being animated.

14.1 OBJECTIVES

After going through this unit, you will be able to:
• Discuss the various types of computer animation languages
• Understand the importance of keyframe systems
• Understand motion specifications

14.2 COMPUTER ANIMATION LANGUAGES

For an animation sequence, the design and control are carried out through a set of
animation outlines. General purpose languages like FORTRAN, Pascal, LISP and
C, are generally employed for programming the animation functions, but there are
various specialized animation languages that have been created. Animation functions
comprise a graphics editor, a key frame generator, an in-between generator as
well as standard graphics routines. With a graphics editor it becomes possible to
design and change object shapes, using spline surface, constructive solid geometry
methods, or other representation schemes.
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Scene description is one of the tasks associated with animation specification.
Scene description includes the positioning of objects and light sources, defining
the photometric parameters, and setting the camera parameters (position,
orientation, and less characteristics). Action specification is also a standard function
associated with animation specification. It involves the layout of motion paths for
the camera and the object. The usual graphics routines: viewing and perspective
transformations, geometric transformations to generate object movements as a
function of accelerations or kinematic path specification, visible-surface identification,
and the surface rendering operations are associated with animation specification.

There are key-frame systems which are specialized animation languages
specifically created for generating in-betweens from the key frames specified by
the user. Typically, a scene’s every associated object is defined as a set of rigid
bodies connected at the joints and with a limited number of degrees of freedom.
Use is made of a parameterized system for specifying characteristics of an object
motion as part of the object definition. The adjustable parameters control such
object characteristics as degree of freedom, motion limitations, and allowable
shape changes. With scripting systems one can define object specifications and
animation sequences with the accepted user-input script. The script can be used
to develop a library of various objects and motions.

The Computer-Animation Process

Half of the process of creating a computer-animated features films has nothing to
do with computers. First, the filmmakers write a treatment, which is a roughly
sketch of the stories. When they have settled on all of the story beats — major
plot points — they are ready to create a storyboard of the films. The storyboard
is a 2-D, comics-books-style rendering of each scene in the movie along with
some jokes and snippets of important dialogues. During the storyboarding
processes, the script is polished and the film makers can start to look how the
scenes will work visually. The next steps is to have the voice actors come in and
records all of their lines. Using the actors’ record dialogue, the filmmaker assembles
a video animated only with the storyboard drawing. After further re-writing, editing,
and re-recording of dialogues, the real animations are ready to begin. The art
departments now design all the characteristics, major set locations, colour and
propspalettes for the film. The characteristics and props are model in 3-D or
scanned into the computer from clay models. Each character is equipped with
hundreds of avars, little hinges that allow the animators to move specific parts of
the characters body. Woody from Toy Story for example, had over 100 avars on
his face alone.

The next steps is to create all of the 3-D set, painstakingly dressed with all
of the detail that brings the virtual world to life. Then the characteristics are placed
on the sets in a process called blocking. The director and lead animators block the
key character position and camera angle for each and every shot of the movies.
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Now team of animator is each assigned short snippet of scenes. They take
the blocking instruction and create their own more detail key frame. They begin
the tweening process. The computer handle a lot of the interpolation — calculating
the best way to tween two key frame — but the artist often has to tweak the result
so they look even more lifelike.

Now the characteristics and props are given surface texture and colours.
They are dressed with clothing that wrinkles and flow naturally with body movement,
hair and fur that waves in the virtual breeze, and skin that look real enough to
touch. The final steps of the process are called rendering. Using powerful computer,
all of the digital informations that the animators has created — character model,
key frames, textures, tweens, colours, sets, props, lighting, digitals paintings, is
assembled into a single frame of films. Even with the incredible computing power,
it take an average of six hours to render one frames of an animated film. That takes
over 88 hours of rendering for a 90-minutes film

14.2.1 Key-Frame Systems

Keyframes are image frames that depict the key positions of the objects being
animated and marks significant changes in the animation sequence. Usually the
extremes of an action or sequence like start, stop and changes of movement direction
occur at keyframes. The more intricate and rapidly varying the motions are, the
more number of keyframes are required. In-betweens are the intermediate frames
drawn between the keyframes and are used to smooth the transition from one
keyframe to the next.

We are familiar with traditional cartoon animation used in the movies or
televisions where artists meticulously draw each frame of a scene and then capture
them frame by frame with a movie camera. While the expert artist draws the
keyframes, the assistants create the filler in-betweens most mechanically.

In a computer based animation, standard software tools are available to
design the keyframes. The software then figures out the in-betweens by applying
interpolation algorithms. One does not have to design every intermediate frame
individually. The process of generating the in-betweens is commonly known as
tweening. The most basic interpolation technique is linear interpolation or lerp.
Given the values p1 and p2 of some attribute (position, color, size) in two keyframes
corresponding to times t1 and t2 respectively, the value pt at any intermediate
frame corresponding to time t is given by,

pt =  2 1
1 2

2 1 2 1

1 1t tp p
t t t t
− −

+
− − .

This implies that pt = (1 – n) p1 + n p2; where n = 1

2 1

1 t
t t  ≤1 and ≥ 0.

Lerping generates motion that starts and stops instantaneously, with objects
attaining their full velocity as soon as they start to move and maintain the movement
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speed until they stop. For such constant velocity animation equal interval time
spacing is used. Moreover the motion path is linear which cannot simulate the
realistic curvilinear trajectory (e.g., projectile path) of moving objects.

To make different parameters vary realistically with time, spline
interpolation technique is often used. By using Bezier functions instead of linear
functions to interpolate between keyframes, smooth motion can be achieved
simulating the gradual increase of velocity at the start and conversely gradual
decrease of velocity at the end. When a motion begins, the amount of change from
one drawing to the next is kept small, but gradually increased. This is called easing
in. The time spacing between frames is increased so that greater changes in position
occur as the object moves faster. When the motion is underway, the changes from
frame to frame are held constant. When the motion ends, it is often stopped gradually,
by reducing the amount of change from frame to frame of the moving object. This
is called easing out. The speed control facility of such non-linear animation
sequences can be effectively used while it is required to synchronize animation
with audio playback.

Note that spline interpolation doesnot mean that objects should follow Bezier
shaped paths, but the rate at which their properties change should be interpolated
using a Bezier function say f (t). Intermediate parameter pt can be calculated as pt
= (1 – f (t)) p1 + f (t) p2.

Thus spatial interpolation defines the motion paths or change of object
position in space. Temporal interpolation, on the other hand, affects the rate of
change of objects position with time. Given the vertex positions at the keyframes,
we can fit the positions with linear or non-linear motion paths. Interpolation can be
applied to other properties of a layer. Its angle can be varied, so that it appears to
rotate. Zoom in and zoom out effect, i.e., the impression of approaching or receding
movement can be introduced by scaling or interpolating size of the object.

1              2                       3

Motion path
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7

Fig. 14.1 Keyframe Systems

In Figure 14.2 the flower, the bee and the honeycomb – three objects are
used for animation. The animation can be created which will make the bee to fly
from the flower to the honeycomb following a curved path. The curved path is
then defined as motion path with the initial and final position of the bee as shown in
keyframes 1 and 7. The in-betweens 2-6 showing intermediate position of the bee
along the motion path are generated by the software (Macromedia Flash) itself.

Further to geometrical transformations, parameters for different effects
(e.g., brightness of glowing edges) and filters (e.g., radius of Gausian blur) of
bitmapped images can be made to vary over time using the standard methods of
interpolation between keyframes. Other elements of animation which can be
employed for bitmapped images include extensions, tilting, bending, lofting,
rendering, fading (in or out) and exploding.  These elements change in successive
frames as time progesses creating a flowing series of changing imagery called as
motion graphics. Changes can occur independent or in agreement with other
changes. For example, you can make an object rotate and fade while it is moving.

Morphing

Morphing is a special affect which is specifically created in motion pictures and
animations to change or morph one image into another through a perfect transition.
Most often it is used to depict one person turning into another through technological
means or as part of a fantasy or incredible sequence. Traditionally, such a depiction
can be attained through cross fading techniques on a film strip. Nowadays, this
has been replaced by computer software for creating more realistic transitions.
Computer techniques involved in morphing basically distort one image to fade into
another through marking corresponding points and vectors on the 'before' and
'after' images used in the morph simultaneously. For example, one would morph
one face into another by marking key points on the first face, such as the contour
of the nose or location of an eye and then marking on the second face where these
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same points existed. The computer can then distort the first face to have the shape
of the second face at the same time that it faded the two faces.

The contour and color of the image of a cat can be morphed into  the image
of a tiger through simple shape and color interpolation. Morphing effect can not
only be applied in transition between still images but also between moving images.
It can produce transformations from one object to a completely different object,
like the  face of a girl transforming into the face of a Cheetah (refer Figure 14.2).
Or it can produce smooth transition from the original object to its distorted version
– a smile created in a face or a structure buckled under load or something like that
where the basic object remains same, and only the character changes.

Fig. 14.2 Morphing Application: Face of the Girl Sequentially Transforming
into the Face of a Lion

There are two parts in the morphing algorithm–the warp and the dissolve.
Given a source image and a target image, warping is the process of distorting the
source image so that it matches the target image. Actually enough number of feature
points or morph points are specified on both the source and target image that
define the respective profile features and divide the images in non-overlapping
triangular and quadrangular meshes. Warping forces morph points of the two
different images match up at the end. This in turn produces one-to-one
transformation of mesh triangles and quadrangles of the source and target images.

For a morph point A in the source image and a corresponding morph point
B in the target image, linear interpolation is used to generate a new morph point C
in an intermediate image. It is given as C = wA + (1 – w)B, w being a weight
applied based on the position of the intermediate image in the timeline. The linear
transformation between two triangles, say, ABC and XYZ in the source and target
images, respectively are given by,

p= w1A + w2B + w3C [p is the position vector of any pixel within ∆ABC]
p′ = w1X + w2Y + w3Z [p′ within ∆XYZ is the transformed counterpart of

p]
= w1 + w2 + w3 = 1

Thus morphing is a kind of shape tweened animation. There are dedicated
morphing software available in the market where the basic keyframing technique
applied is same as that adopted in animation motion tweening software.
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At first you should have the image of the original object as the first keyframe
(source image) of the morphing sequence. Then you create a second keyframe—
the desired number of frames after the first frame. Here you copy the original
object or put a completely different object. This would be the last frame (target
image) in the sequence depicting the ultimate transformation stage. Set equal number
of morph points (keypoints) in the first and last keyframes to specify the changes
of different portions of the image separately. As morph points have a one-to-one
correspondence in starting and ending shapes, the point you set in the start image
will move/change to the corresponding point in the final image.

Thus you can position morph points along the contour of lips, both in the
image of a face (in the start keyframe) and in its copy (in the end keyframe). If you
want to make the face smiling you have to open up the lips. So reposition the
morph points along an imaginary open lip contour in the end frame assuming how
it should appear after the original face gets changed to a smiling face. The software
will now interpolate the shapes for the frames in between, thereby creating the
desired morphing. The more the number of morph points and intermediate frames
chosen (with a given frame rate), the smoother the morph will be. Similarly you
can morph the image of a girl into the image of a boy. The effect will be as if the girl
is gradually transforming to a boy miraculously by some magic touch.

Actually when the morphing routine is run, the image of the start frame is
warped into the shape of the end frame image as it gradually fades a the specified
image undergoes the fading and warping effect and the target image  undergoes
the reverse warping and fading. That is, the target image gradually fades in and
reveals itself most prominently in the end frame. Hight quality morphing software
provides smooth blending of two images so that the source image seems to melt
or dissolve into the subsequent image frames and finally to the target image. This
part of morphing process is known as dissolve. While warping creates
transformation between point coordinates, dissolve causes transformation of color
vectors (R, G, B) pixel by pixel.

To control the software generated morphing sequence, you can choose any
one option for Blend type from the following:

Distributive type creates a sequence in which the intermediate shapes are
smoother and more irregular.

Angular type creates a sequence that preserves apparent corners and straight
lines in the intermediate shapes. Angular is appropriate only for blending shapes
with sharp corners and straight lines.

As in motion tweening, the rate of shape transition can be controlled in a
morphing sequence. By default, the rate of shape change through tweened frames
is constant. Easing (In and Out) creates a more natural effect of morphing by
increasing or decreasing the rate of change toward the beginning or ending of a
transition.
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Figure 14.3 shows how shape change occurs in morphing.

1        6 2 

     

3  4              5

Fig. 14.3 Morphing

Frame 1 is the start frame showing morph points a, b, c, d on the square.
Frame 6 is the end frame showing the changed position of the same set of morph
points on the circle. We want the square to transform to the circle. Frames 2-5 are
the intermediate frames generated by the software as the square gradually fades
out and the circle takes its shape.

Today some of the most widely used tools for creating multimedia animations
are Macromedia’s Director (dir) and Flash (), AnimatorPro (fli and flc), 3-D
Studio Max (max), Shockwave (dcr), etc. Within brackets are specified the
animation file formats generated by the corresponding software. Besides this,
Windows Audio Video Interleaved format (avi), mpg and mov formats can also
support animations.

Some products that offer morphing features are Gryphon Softwares Morph,
Ulead’s MorphStudio, ImageWare’s MorphWizard, MetaTool’s Digital Morph,
etc.

14.2.2 Motion Specifications

There are numerous methods to specify the motions of objects in an animation
system. The general methods to describe an animation sequence using explicit
specification of paths of motion include the description of the interactions that are
produced due to motion. The motion sequence can be specified using motion
parameters, such as the rotation angles and translation vectors. The animator can
use a technique to specify each and every pixel value at each and every frame. The
feature that is appropriate for one kind of animation may not be the appropriate
feature for another kind of animation. Hence, the animator can specify the various
levels of abstractions.
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Besides other special effects, the camera panning effect can also be simulated
in animation like in the movies. Typically, panning refers to the change of the
background across the field of view. A background drawing larger than the object
is moved step by step across the animation sequence as the camera exposes
frame after frame of film. Objects in the foreground appear to be moving along
relative to the scenery behind them. Thus we can make a bird fly while the
background (sky) rolls in opposite direction giving the illusion that the bird is covering
distance.

Fig. 14.4 The Baby Crawls from Left to Right and then Holds the
Ball with his Hands. The Ball Spins and Rolls from Right to Middle of the Scene

Fig. 14.5 The Spotlight Passes Over the Text from Left to Right – such
Animation effect is often used in Title Casting of Motion Pictures

14.2.3 Kinematics and Dynamics

A wide spread method for animating the articulated images is termed as kinematics.
It is based on the properties of motion, such as time, position and velocity. The
term forward kinematics is used when joint rotations are specified in function of
time. The term inverse kinematics refers to the problem of specifying the forward
kinematics values when the end-point of the character articulation is known. The
most common examples of forward and inverse kinematics are the keyframe editors
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which interpolate forward kinematics values from a few intermediate values and
the possibilities of fixing the extremities of articulated objects while moving the
other components or dragging the extremities themselves present in many modelling
and animation packages.

3-D Animation

A distinct alternative to the 2-D animations techniques is 3-D animation or stop
motion animation.

The classical technique  to create 3-D object models out of malleable
modelling material are to plasticine and manipulate those objects in 3-D miniature
sets between shots to produce natural movement, gesture and otherwise impossible
changes. This form of animation is often called clay animation.

In the digital realm, 3-D wireframe models are created first and then surface
and material properties are assigned using photo realistic rendereing. There are
distinct numerical parameters that control object’s position (movement) and
orientation (rotation) in space, its surface characteristics, its shape, intensity and
direction of light sources, camera position and angle. A 3-D animation is achieved
by rendering a scene as the first frame, making some changes to the parameters,
rendering the next frame, and so on. Motion paths in 3-D, often 3-D Bezier splines,
can be used to describe movement.

Realistic shading and rendering based on advanced ray tracing algorithm
consumes considerable time to generate a scene. Therefore high processing power
and memory is required to cope up with the required frame rate for smooth
animation.

At the very highest level of 3-D computer generated animation software,
interfaces allow the animator to control different movement parameters to produce
smooth movement across the frames. Described below briefly are the different
methods of controlling animation.

1. Full Explicit Control: It is the simplest type of control where the animator
either specifies simple changes like scaling, translation, rotation or provides
keyframe information and interpolation methods interactively.

2. Procedural Control: It is based on certain kinds of behavior that can be
applied to objects and the way they interact. In a physically based system
the position of one object may influence the motion of another object, for
example, spotlight follows a dancer, a sunflower follows the sun, etc. In
such systems, objects are modeled with physical attributes, such as mass,
moment of inertia, elasticity, velocity, etc., and object behaviour as emulated
in animation are based on laws of Newtonian physics against applied external
force. Thus moving objects can be made to collide realistically or to bounce
of solid surface.
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3. Kinematics: It is the study of motion of bodies without reference to mass
or force. That is, it is only concerned with how things can move, rather than
what makes them do so. Animations of linked objects or jointed structures,
for example limbs of human or animal figures are controlled by imposing
kinematic constraints obeyed by real objects or structures. For example,
a 3-D model of a door must have the same degree of freedom to move/
rotate as a real door has with the movement constraints produced by the
hinges.
Kinematics being a general term, forward kinematics and inverse
kinematics both are used in controlling animation. While the former deals
with linked motions from cause to the effect, the inverse kinematics works
backward from effect to cause. For example, it is the motion of the upper
arm that propels the rest of the arm and hand. Modelling the hand’s position
from movement and position of the upper arm requires forward kinematics.
Whereas, first fixing the position of the hand and then backtracking to find
the relevant motion of upper arm is what inverse kinematics is and sometimes
it is more useful to the animator.

4. Tracking Live Action: This technique produces exceptionally realistic
motion. Trajectories of objects to be animated can be generated by tracking
of live action. One such method is rotoscoping. A film is made in which
people or animals act out the parts of the characters in animation. Then the
animator draws over the film, changing the background and replacing the
human or animal actors with their animation equivalents. In an alternative
method some sort of indicators or motion sensors are attached to key points
on an actor’s body or body suit. By tracking the position of the indicators
or sensors, the animator can get locations for corresponding key points in
an animated model.

Check Your Progress

1. What are the general purpose languages used for programming the computer
animation functions?

2. Define morphing.

14.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. General purpose languages like FORTRAN, Pascal, LISP and C, are
generally employed for programming the animation functions.

2. Morphing is a special affect which is specifically created in motion pictures
and animations to change or morph one image into another through a perfect
transition.
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14.4 SUMMARY

• Animation functions comprise a graphics editor, a key frame generator, an
in-between generator as well as standard graphics routines.

• Half of the process of creating a computer-animated features films has nothing
to do with computers. First, the filmmakers write a treatment, which is a
roughly sketch of the stories.

• Keyframes are image frames that depict the key positions of the objects
being animated and marks significant changes in the animation sequence.

• Morphing is a special affect which is specifically created in motion pictures
and animations to change or morph one image into another through a perfect
transition.

• The motion sequence can be specified using motion parameters, such as
the rotation angles and translation vectors. The animator can use a technique
to specify each and every pixel value at each and every frame.

• A wide spread method for animating the articulated images is termed as
kinematics. It is based on the properties of motion, such as time, position
and velocity.

• The classical technique to create 3-D object models out of malleable modelling
material are to plasticine and manipulate those objects in 3-D miniature sets
between shots to produce natural movement, gesture and otherwise
impossible changes. This form of animation is often called clay animation.

14.5 KEY WORDS

• Animation: It refers to the technique of photographing successive drawings
orpositions of puppets or models to create an illusion of movement when
the film isshown as a sequence.

• Full Explicit Control: It is the simplest type of control where the animator
either specifies simple changes like scaling, translation, rotation or provides
key frame information and interpolation methods interactively.

• Tracking Live Action: This technique produces exceptionally realistic
motion. Trajectories of objects to be animated can be generated by tracking
of live action. One such method is rotoscoping.
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EXERCISES

Short Answer Questions

1. What is a key frame?
2. What does motion specifications refer?

Long Answer Questions

1. What are the different types of computer animation languages? Explain.
2. Explain the significance of motion specifications in computer graphics.
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